mmsegmentation/configs/bisenetv1
MengzhangLI d966f98f83
[Feature] Support ICNet (#884)
* add icnet backbone

* add icnet head

* add icnet configs

* nclass -> num_classes

* Support ICNet

* ICNet

* ICNet

* Add ICNeck

* Add ICNeck

* Add ICNeck

* Add ICNeck

* Adding unittest

* Uploading models & logs

* Uploading models & logs

* add comment

* smaller test_swin.py

* try to delete test_swin.py

* delete test_unet.py

* delete test_unet.py

* temp

* smaller test_unet.py

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
2021-09-30 09:31:57 -07:00
..
README.md [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
bisenetv1.yml [Feature] Support ICNet (#884) 2021-09-30 09:31:57 -07:00
bisenetv1_r18-d32_4x4_1024x1024_160k_cityscapes.py [Feature] Support BiSeNetV1 (#851) 2021-09-29 02:12:57 +08:00
bisenetv1_r18-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py [Feature] Support BiSeNetV1 (#851) 2021-09-29 02:12:57 +08:00
bisenetv1_r18-d32_in1k-pre_4x8_1024x1024_160k_cityscapes.py [Feature] Support BiSeNetV1 (#851) 2021-09-29 02:12:57 +08:00
bisenetv1_r50-d32_4x4_1024x1024_160k_cityscapes.py [Feature] Support BiSeNetV1 (#851) 2021-09-29 02:12:57 +08:00
bisenetv1_r50-d32_in1k-pre_4x4_1024x1024_160k_cityscapes.py [Feature] Support BiSeNetV1 (#851) 2021-09-29 02:12:57 +08:00

README.md

BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation

Introduction

Official Repo

Code Snippet

BiSeNetV1 (ECCV'2018)
@inproceedings{yu2018bisenet,
  title={Bisenet: Bilateral segmentation network for real-time semantic segmentation},
  author={Yu, Changqian and Wang, Jingbo and Peng, Chao and Gao, Changxin and Yu, Gang and Sang, Nong},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  pages={325--341},
  year={2018}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
BiSeNetV1 (No Pretrain) R-18-D32 1024x1024 160000 5.69 31.77 74.44 77.05 config model | log
BiSeNetV1 R-18-D32 1024x1024 160000 5.69 31.77 74.37 76.91 config model | log
BiSeNetV1 (4x8) R-18-D32 1024x1024 160000 11.17 31.77 75.16 77.24 config model | log
BiSeNetV1 (No Pretrain) R-50-D32 1024x1024 160000 15.39 7.71 76.92 78.87 config model | log
BiSeNetV1 R-50-D32 1024x1024 160000 15.39 7.71 77.68 79.57 config model | log

Note:

  • 4x8: Using 4 GPUs with 8 samples per GPU in training.
  • Default setting is 4 GPUs with 4 samples per GPU in training.
  • No Pretrain means the model is trained from scratch.