mmsegmentation/configs/bisenetv1/bisenetv1_r50-d32_4x4_1024x...

47 lines
1.3 KiB
Python

_base_ = [
'../_base_/models/bisenetv1_r18-d32.py',
'../_base_/datasets/cityscapes_1024x1024.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
backbone=dict(
type='BiSeNetV1',
context_channels=(512, 1024, 2048),
spatial_channels=(256, 256, 256, 512),
out_channels=1024,
backbone_cfg=dict(
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://resnet50_v1c'),
type='ResNet',
depth=50)),
decode_head=dict(
type='FCNHead', in_channels=1024, in_index=0, channels=1024),
auxiliary_head=[
dict(
type='FCNHead',
in_channels=512,
channels=256,
num_convs=1,
num_classes=19,
in_index=1,
norm_cfg=norm_cfg,
concat_input=False),
dict(
type='FCNHead',
in_channels=512,
channels=256,
num_convs=1,
num_classes=19,
in_index=2,
norm_cfg=norm_cfg,
concat_input=False),
])
lr_config = dict(warmup='linear', warmup_iters=1000)
optimizer = dict(lr=0.05)
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
)