* FastFCN first commit * FastFCN first commit * Fixing lint error * Fixing lint error * use for loop on JPU * Use For Loop * Refactor FastFCN * FastFCN * FastFCN * temp * Uploading models & logs (4x4) * Fixing typos * fix typos * rename config * change README.md * use _delete_=True * change configs * change start_level to 0 * change start_level to 0 * jpu * add unittest for start_level!=0 |
||
---|---|---|
.. | ||
README.md | ||
fastfcn.yml | ||
fastfcn_r50-d32_jpu_aspp_4x4_512x1024_80k_cityscapes.py | ||
fastfcn_r50-d32_jpu_aspp_512x1024_80k_cityscapes.py | ||
fastfcn_r50-d32_jpu_enc_4x4_512x1024_80k_cityscapes.py | ||
fastfcn_r50-d32_jpu_enc_512x1024_80k_cityscapes.py | ||
fastfcn_r50-d32_jpu_psp_4x4_512x1024_80k_cityscapes.py | ||
fastfcn_r50-d32_jpu_psp_512x1024_80k_cityscapes.py |
README.md
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation
Introduction
FastFCN (ArXiv'2019)
@article{wu2019fastfcn,
title={Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation},
author={Wu, Huikai and Zhang, Junge and Huang, Kaiqi and Liang, Kongming and Yu, Yizhou},
journal={arXiv preprint arXiv:1903.11816},
year={2019}
}
Results and models
Cityscapes
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
---|---|---|---|---|---|---|---|---|---|
DeepLabV3 + JPU | R-50-D32 | 512x1024 | 80000 | 5.67 | 2.64 | 79.12 | 80.58 | config | model | log |
DeepLabV3 + JPU (4x4) | R-50-D32 | 512x1024 | 80000 | 9.79 | - | 79.52 | 80.91 | config | model | log |
PSPNet + JPU | R-50-D32 | 512x1024 | 80000 | 5.67 | 4.40 | 79.26 | 80.86 | config | model | log |
PSPNet + JPU (4x4) | R-50-D32 | 512x1024 | 80000 | 9.94 | - | 78.76 | 80.03 | config | model | log |
EncNet + JPU | R-50-D32 | 512x1024 | 80000 | 8.15 | 4.77 | 77.97 | 79.92 | config | model | log |
EncNet + JPU (4x4) | R-50-D32 | 512x1024 | 80000 | 15.45 | - | 78.6 | 80.25 | config | model | log |
Note:
4x4
means 4 GPUs with 4 samples per GPU in training, default setting is 4 GPUs with 2 samples per GPU in training.- Results of DeepLabV3 (mIoU: 79.32), PSPNet (mIoU: 78.55) and ENCNet (mIoU: 77.94) can be found in each original repository.