306 lines
9.7 KiB
YAML
306 lines
9.7 KiB
YAML
Collections:
|
|
- Name: gcnet
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
- Pascal VOC 2012 + Aug
|
|
Paper:
|
|
URL: https://arxiv.org/abs/1904.11492
|
|
Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond'
|
|
README: configs/gcnet/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/gc_head.py#L10
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: https://github.com/xvjiarui/GCNet
|
|
Models:
|
|
- Name: gcnet_r50-d8_512x1024_40k_cityscapes
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 254.45
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 5.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.69
|
|
mIoU(ms+flip): 78.56
|
|
Config: configs/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth
|
|
- Name: gcnet_r101-d8_512x1024_40k_cityscapes
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 383.14
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 9.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.28
|
|
mIoU(ms+flip): 79.34
|
|
Config: configs/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth
|
|
- Name: gcnet_r50-d8_769x769_40k_cityscapes
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 598.8
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
memory (GB): 6.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.12
|
|
mIoU(ms+flip): 80.09
|
|
Config: configs/gcnet/gcnet_r50-d8_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth
|
|
- Name: gcnet_r101-d8_769x769_40k_cityscapes
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 884.96
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
memory (GB): 10.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.95
|
|
mIoU(ms+flip): 80.71
|
|
Config: configs/gcnet/gcnet_r101-d8_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth
|
|
- Name: gcnet_r50-d8_512x1024_80k_cityscapes
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.48
|
|
mIoU(ms+flip): 80.01
|
|
Config: configs/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth
|
|
- Name: gcnet_r101-d8_512x1024_80k_cityscapes
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.03
|
|
mIoU(ms+flip): 79.84
|
|
Config: configs/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth
|
|
- Name: gcnet_r50-d8_769x769_80k_cityscapes
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.68
|
|
mIoU(ms+flip): 80.66
|
|
Config: configs/gcnet/gcnet_r50-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth
|
|
- Name: gcnet_r101-d8_769x769_80k_cityscapes
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.18
|
|
mIoU(ms+flip): 80.71
|
|
Config: configs/gcnet/gcnet_r101-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth
|
|
- Name: gcnet_r50-d8_512x512_80k_ade20k
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 42.77
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 8.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 41.47
|
|
mIoU(ms+flip): 42.85
|
|
Config: configs/gcnet/gcnet_r50-d8_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth
|
|
- Name: gcnet_r101-d8_512x512_80k_ade20k
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 65.79
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 12.0
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.82
|
|
mIoU(ms+flip): 44.54
|
|
Config: configs/gcnet/gcnet_r101-d8_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth
|
|
- Name: gcnet_r50-d8_512x512_160k_ade20k
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.37
|
|
mIoU(ms+flip): 43.52
|
|
Config: configs/gcnet/gcnet_r50-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth
|
|
- Name: gcnet_r101-d8_512x512_160k_ade20k
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.69
|
|
mIoU(ms+flip): 45.21
|
|
Config: configs/gcnet/gcnet_r101-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth
|
|
- Name: gcnet_r50-d8_512x512_20k_voc12aug
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 42.83
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 5.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.42
|
|
mIoU(ms+flip): 77.51
|
|
Config: configs/gcnet/gcnet_r50-d8_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth
|
|
- Name: gcnet_r101-d8_512x512_20k_voc12aug
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 67.57
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 9.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.41
|
|
mIoU(ms+flip): 78.56
|
|
Config: configs/gcnet/gcnet_r101-d8_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth
|
|
- Name: gcnet_r50-d8_512x512_40k_voc12aug
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.24
|
|
mIoU(ms+flip): 77.63
|
|
Config: configs/gcnet/gcnet_r50-d8_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth
|
|
- Name: gcnet_r101-d8_512x512_40k_voc12aug
|
|
In Collection: gcnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.84
|
|
mIoU(ms+flip): 78.59
|
|
Config: configs/gcnet/gcnet_r101-d8_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth
|