193 lines
5.9 KiB
YAML
193 lines
5.9 KiB
YAML
Collections:
|
|
- Name: resnest
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20k
|
|
Paper:
|
|
URL: https://arxiv.org/abs/2004.08955
|
|
Title: 'ResNeSt: Split-Attention Networks'
|
|
README: configs/resnest/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/resnest.py#L271
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: https://github.com/zhanghang1989/ResNeSt
|
|
Models:
|
|
- Name: fcn_s101-d8_512x1024_80k_cityscapes
|
|
In Collection: resnest
|
|
Metadata:
|
|
backbone: S-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 418.41
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 11.4
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.56
|
|
mIoU(ms+flip): 78.98
|
|
Config: configs/resnest/fcn_s101-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth
|
|
- Name: pspnet_s101-d8_512x1024_80k_cityscapes
|
|
In Collection: resnest
|
|
Metadata:
|
|
backbone: S-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 396.83
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 11.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.57
|
|
mIoU(ms+flip): 79.19
|
|
Config: configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth
|
|
- Name: deeplabv3_s101-d8_512x1024_80k_cityscapes
|
|
In Collection: resnest
|
|
Metadata:
|
|
backbone: S-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 531.91
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 11.9
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.67
|
|
mIoU(ms+flip): 80.51
|
|
Config: configs/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth
|
|
- Name: deeplabv3plus_s101-d8_512x1024_80k_cityscapes
|
|
In Collection: resnest
|
|
Metadata:
|
|
backbone: S-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 423.73
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 13.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.62
|
|
mIoU(ms+flip): 80.27
|
|
Config: configs/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth
|
|
- Name: fcn_s101-d8_512x512_160k_ade20k
|
|
In Collection: resnest
|
|
Metadata:
|
|
backbone: S-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 77.76
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 14.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20k
|
|
Metrics:
|
|
mIoU: 45.62
|
|
mIoU(ms+flip): 46.16
|
|
Config: configs/resnest/fcn_s101-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth
|
|
- Name: pspnet_s101-d8_512x512_160k_ade20k
|
|
In Collection: resnest
|
|
Metadata:
|
|
backbone: S-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 76.8
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 14.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20k
|
|
Metrics:
|
|
mIoU: 45.44
|
|
mIoU(ms+flip): 46.28
|
|
Config: configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth
|
|
- Name: deeplabv3_s101-d8_512x512_160k_ade20k
|
|
In Collection: resnest
|
|
Metadata:
|
|
backbone: S-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 107.76
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 14.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20k
|
|
Metrics:
|
|
mIoU: 45.71
|
|
mIoU(ms+flip): 46.59
|
|
Config: configs/resnest/deeplabv3_s101-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth
|
|
- Name: deeplabv3plus_s101-d8_512x512_160k_ade20k
|
|
In Collection: resnest
|
|
Metadata:
|
|
backbone: S-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 83.61
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 16.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20k
|
|
Metrics:
|
|
mIoU: 46.47
|
|
mIoU(ms+flip): 47.27
|
|
Config: configs/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth
|