mmsegmentation/configs/setr/setr_mla_512x512_160k_b8_ad...

82 lines
2.5 KiB
Python

_base_ = [
'../_base_/models/setr_mla.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
pretrained='pretrain/vit_large_patch16_384.pth',
backbone=dict(img_size=(512, 512), drop_rate=0.),
decode_head=dict(num_classes=150),
auxiliary_head=[
dict(
type='FCNHead',
in_channels=256,
channels=256,
in_index=0,
dropout_ratio=0,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'),
num_convs=0,
kernel_size=1,
concat_input=False,
num_classes=150,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='FCNHead',
in_channels=256,
channels=256,
in_index=1,
dropout_ratio=0,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'),
num_convs=0,
kernel_size=1,
concat_input=False,
num_classes=150,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='FCNHead',
in_channels=256,
channels=256,
in_index=2,
dropout_ratio=0,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'),
num_convs=0,
kernel_size=1,
concat_input=False,
num_classes=150,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
dict(
type='FCNHead',
in_channels=256,
channels=256,
in_index=3,
dropout_ratio=0,
norm_cfg=norm_cfg,
act_cfg=dict(type='ReLU'),
num_convs=0,
kernel_size=1,
concat_input=False,
num_classes=150,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
],
test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)),
)
optimizer = dict(
lr=0.001,
weight_decay=0.0,
paramwise_cfg=dict(custom_keys={'head': dict(lr_mult=10.)}))
# num_gpus: 8 -> batch_size: 8
data = dict(samples_per_gpu=1)