247 lines
13 KiB
Markdown
247 lines
13 KiB
Markdown
<div align="center">
|
|
<img src="resources/mmseg-logo.png" width="600"/>
|
|
<div> </div>
|
|
<div align="center">
|
|
<b><font size="5">OpenMMLab website</font></b>
|
|
<sup>
|
|
<a href="https://openmmlab.com">
|
|
<i><font size="4">HOT</font></i>
|
|
</a>
|
|
</sup>
|
|
|
|
<b><font size="5">OpenMMLab platform</font></b>
|
|
<sup>
|
|
<a href="https://platform.openmmlab.com">
|
|
<i><font size="4">TRY IT OUT</font></i>
|
|
</a>
|
|
</sup>
|
|
</div>
|
|
<div> </div>
|
|
|
|
[](https://pypi.org/project/mmsegmentation/)
|
|
[](https://pypi.org/project/mmsegmentation)
|
|
[](https://mmsegmentation.readthedocs.io/en/1.x/)
|
|
[](https://github.com/open-mmlab/mmsegmentation/actions)
|
|
[](https://codecov.io/gh/open-mmlab/mmsegmentation)
|
|
[](https://github.com/open-mmlab/mmsegmentation/blob/1.x/LICENSE)
|
|
[](https://github.com/open-mmlab/mmsegmentation/issues)
|
|
[](https://github.com/open-mmlab/mmsegmentation/issues)
|
|
|
|
Documentation: <https://mmsegmentation.readthedocs.io/en/1.x/>
|
|
|
|
English | [简体中文](README_zh-CN.md)
|
|
|
|
</div>
|
|
|
|
<div align="center">
|
|
<a href="https://openmmlab.medium.com/" style="text-decoration:none;">
|
|
<img src="https://user-images.githubusercontent.com/25839884/218352562-cdded397-b0f3-4ca1-b8dd-a60df8dca75b.png" width="3%" alt="" /></a>
|
|
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
|
<a href="https://discord.gg/raweFPmdzG" style="text-decoration:none;">
|
|
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
|
|
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
|
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
|
|
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
|
|
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
|
|
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
|
|
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
|
|
</div>
|
|
|
|
## Introduction
|
|
|
|
MMSegmentation is an open source semantic segmentation toolbox based on PyTorch.
|
|
It is a part of the OpenMMLab project.
|
|
|
|
The 1.x branch works with **PyTorch 1.6+**.
|
|
|
|

|
|
|
|
### Major features
|
|
|
|
- **Unified Benchmark**
|
|
|
|
We provide a unified benchmark toolbox for various semantic segmentation methods.
|
|
|
|
- **Modular Design**
|
|
|
|
We decompose the semantic segmentation framework into different components and one can easily construct a customized semantic segmentation framework by combining different modules.
|
|
|
|
- **Support of multiple methods out of box**
|
|
|
|
The toolbox directly supports popular and contemporary semantic segmentation frameworks, *e.g.* PSPNet, DeepLabV3, PSANet, DeepLabV3+, etc.
|
|
|
|
- **High efficiency**
|
|
|
|
The training speed is faster than or comparable to other codebases.
|
|
|
|
## What's New
|
|
|
|
v1.0.0rc6 was released on 03/03/2023.
|
|
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.
|
|
|
|
- Support MMSegInferencer ([#2413](https://github.com/open-mmlab/mmsegmentation/pull/2413), [#2658](https://github.com/open-mmlab/mmsegmentation/pull/2658))
|
|
- Support REFUGE dataset ([#2554](https://github.com/open-mmlab/mmsegmentation/pull/2554))
|
|
|
|
## Installation
|
|
|
|
Please refer to [get_started.md](docs/en/get_started.md#installation) for installation and [dataset_prepare.md](docs/en/user_guides/2_dataset_prepare.md#prepare-datasets) for dataset preparation.
|
|
|
|
## Get Started
|
|
|
|
Please see [Overview](docs/en/overview.md) for the general introduction of MMSegmentation.
|
|
|
|
Please see [user guides](https://mmsegmentation.readthedocs.io/en/1.x/user_guides/index.html#) for the basic usage of MMSegmentation.
|
|
There are also [advanced tutorials](https://mmsegmentation.readthedocs.io/en/dev-1.x/advanced_guides/index.html) for in-depth understanding of mmseg design and implementation .
|
|
|
|
A Colab tutorial is also provided. You may preview the notebook [here](demo/MMSegmentation_Tutorial.ipynb) or directly [run](https://colab.research.google.com/github/open-mmlab/mmsegmentation/blob/1.x/demo/MMSegmentation_Tutorial.ipynb) on Colab.
|
|
|
|
To migrate from MMSegmentation 1.x, please refer to [migration](docs/en/migration).
|
|
|
|
## Benchmark and model zoo
|
|
|
|
Results and models are available in the [model zoo](docs/en/model_zoo.md).
|
|
|
|
<details open>
|
|
<summary>Supported backbones:</summary>
|
|
|
|
- [x] ResNet (CVPR'2016)
|
|
- [x] ResNeXt (CVPR'2017)
|
|
- [x] [HRNet (CVPR'2019)](configs/hrnet)
|
|
- [x] [ResNeSt (ArXiv'2020)](configs/resnest)
|
|
- [x] [MobileNetV2 (CVPR'2018)](configs/mobilenet_v2)
|
|
- [x] [MobileNetV3 (ICCV'2019)](configs/mobilenet_v3)
|
|
- [x] [Vision Transformer (ICLR'2021)](configs/vit)
|
|
- [x] [Swin Transformer (ICCV'2021)](configs/swin)
|
|
- [x] [Twins (NeurIPS'2021)](configs/twins)
|
|
- [x] [BEiT (ICLR'2022)](configs/beit)
|
|
- [x] [ConvNeXt (CVPR'2022)](configs/convnext)
|
|
- [x] [MAE (CVPR'2022)](configs/mae)
|
|
- [x] [PoolFormer (CVPR'2022)](configs/poolformer)
|
|
|
|
</details>
|
|
|
|
<details open>
|
|
<summary>Supported methods:</summary>
|
|
|
|
- [x] [FCN (CVPR'2015/TPAMI'2017)](configs/fcn)
|
|
- [x] [ERFNet (T-ITS'2017)](configs/erfnet)
|
|
- [x] [UNet (MICCAI'2016/Nat. Methods'2019)](configs/unet)
|
|
- [x] [PSPNet (CVPR'2017)](configs/pspnet)
|
|
- [x] [DeepLabV3 (ArXiv'2017)](configs/deeplabv3)
|
|
- [x] [BiSeNetV1 (ECCV'2018)](configs/bisenetv1)
|
|
- [x] [PSANet (ECCV'2018)](configs/psanet)
|
|
- [x] [DeepLabV3+ (CVPR'2018)](configs/deeplabv3plus)
|
|
- [x] [UPerNet (ECCV'2018)](configs/upernet)
|
|
- [x] [ICNet (ECCV'2018)](configs/icnet)
|
|
- [x] [NonLocal Net (CVPR'2018)](configs/nonlocal_net)
|
|
- [x] [EncNet (CVPR'2018)](configs/encnet)
|
|
- [x] [Semantic FPN (CVPR'2019)](configs/sem_fpn)
|
|
- [x] [DANet (CVPR'2019)](configs/danet)
|
|
- [x] [APCNet (CVPR'2019)](configs/apcnet)
|
|
- [x] [EMANet (ICCV'2019)](configs/emanet)
|
|
- [x] [CCNet (ICCV'2019)](configs/ccnet)
|
|
- [x] [DMNet (ICCV'2019)](configs/dmnet)
|
|
- [x] [ANN (ICCV'2019)](configs/ann)
|
|
- [x] [GCNet (ICCVW'2019/TPAMI'2020)](configs/gcnet)
|
|
- [x] [FastFCN (ArXiv'2019)](configs/fastfcn)
|
|
- [x] [Fast-SCNN (ArXiv'2019)](configs/fastscnn)
|
|
- [x] [ISANet (ArXiv'2019/IJCV'2021)](configs/isanet)
|
|
- [x] [OCRNet (ECCV'2020)](configs/ocrnet)
|
|
- [x] [DNLNet (ECCV'2020)](configs/dnlnet)
|
|
- [x] [PointRend (CVPR'2020)](configs/point_rend)
|
|
- [x] [CGNet (TIP'2020)](configs/cgnet)
|
|
- [x] [BiSeNetV2 (IJCV'2021)](configs/bisenetv2)
|
|
- [x] [STDC (CVPR'2021)](configs/stdc)
|
|
- [x] [SETR (CVPR'2021)](configs/setr)
|
|
- [x] [DPT (ArXiv'2021)](configs/dpt)
|
|
- [x] [Segmenter (ICCV'2021)](configs/segmenter)
|
|
- [x] [SegFormer (NeurIPS'2021)](configs/segformer)
|
|
- [x] [K-Net (NeurIPS'2021)](configs/knet)
|
|
- [x] [MaskFormer (NeurIPS'2021)](configs/maskformer)
|
|
- [x] [Mask2Former (CVPR'2022)](configs/mask2former)
|
|
- [x] [PIDNet (ArXiv'2022)](configs/pidnet)
|
|
|
|
</details>
|
|
|
|
<details open>
|
|
<summary>Supported datasets:</summary>
|
|
|
|
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#cityscapes)
|
|
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#pascal-voc)
|
|
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#ade20k)
|
|
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#pascal-context)
|
|
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-10k)
|
|
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#coco-stuff-164k)
|
|
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#chase-db1)
|
|
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#drive)
|
|
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#hrf)
|
|
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#stare)
|
|
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#dark-zurich)
|
|
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#nighttime-driving)
|
|
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#loveda)
|
|
- [x] [Potsdam](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-potsdam)
|
|
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen)
|
|
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#isaid)
|
|
- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)
|
|
|
|
</details>
|
|
|
|
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions.
|
|
|
|
## Projects
|
|
|
|
[Here](projects/README.md) are some implementations of SOTA models and solutions built on MMSegmentation, which are supported and maintained by community users. These projects demonstrate the best practices based on MMSegmentation for research and product development. We welcome and appreciate all the contributions to OpenMMLab ecosystem.
|
|
|
|
## Contributing
|
|
|
|
We appreciate all contributions to improve MMSegmentation. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
|
|
|
|
## Acknowledgement
|
|
|
|
MMSegmentation is an open source project that welcome any contribution and feedback.
|
|
We wish that the toolbox and benchmark could serve the growing research
|
|
community by providing a flexible as well as standardized toolkit to reimplement existing methods
|
|
and develop their own new semantic segmentation methods.
|
|
|
|
## Citation
|
|
|
|
If you find this project useful in your research, please consider cite:
|
|
|
|
```bibtex
|
|
@misc{mmseg2020,
|
|
title={{MMSegmentation}: OpenMMLab Semantic Segmentation Toolbox and Benchmark},
|
|
author={MMSegmentation Contributors},
|
|
howpublished = {\url{https://github.com/open-mmlab/mmsegmentation}},
|
|
year={2020}
|
|
}
|
|
```
|
|
|
|
## License
|
|
|
|
This project is released under the [Apache 2.0 license](LICENSE).
|
|
|
|
## OpenMMLab Family
|
|
|
|
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models
|
|
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
|
|
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
|
|
- [MMEval](https://github.com/open-mmlab/mmeval): A unified evaluation library for multiple machine learning libraries.
|
|
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
|
|
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
|
|
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
|
|
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
|
|
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
|
|
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
|
|
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
|
|
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
|
|
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
|
|
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
|
|
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
|
|
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
|
|
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
|
|
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
|
|
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
|
|
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
|
|
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
|
|
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab Model Deployment Framework.
|