## Motivation Supplementary PR #2444 Fix tiny bug and add loss_by_feat() to compute loss to train. The inference process have verified to be accurate. ## Modification - modify `sep_aspp_contrast_head.py` , add `loss_by_feat()` function to train(training still has bug, will fix in future😫) - fix testing commands path error `bash tools/dist_test.sh projects/HieraSeg_project/` to `bash tools/dist_test.sh projects/HieraSeg/` at README.md |
||
---|---|---|
.. | ||
configs | ||
decode_head | ||
losses | ||
README.md |
README.md
HSSN
Description
Author: AI-Tianlong
This project implements Deep Hierarchical Semantic Segmentation
inference on cityscapes
dataset
Usage
Prerequisites
- Python 3.8
- PyTorch 1.6 or higher
- MMSegmentation v1.0.0rc5
- mmcv v2.0.0rc4
- mmengine >=0.4.0
Dataset preparing
Preparing cityscapes
dataset following this Dataset Preparing Guide
Testing commands
Please put hieraseg_deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024_20230112_125023-bc59a3d1.pth
to mmsegmentation/checkpoints
Multi-GPUs Test
# --tta optional, multi-scale test, need mmengine >=0.4.0
bash tools/dist_test.sh [configs] [model weights] [number of gpu] --tta
Example
bash tools/dist_test.sh projects/hssn/configs/hssn/hieraseg_deeplabv3plus_r101-d8_4xb2-80l_cityscapes-512x1024.py checkpoints/hieraseg_deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024_20230112_125023-bc59a3d1.pth 2 --tta
Results
Cityscapes
Method | Backbone | Crop Size | mIoU | mIoU (ms+flip) | config | model |
---|---|---|---|---|---|---|
DeeplabV3+ | R-101-D8 | 512x1024 | 81.61 | 82.71 | config | model |
Citation
This project is modified from qhanghu/HSSN_pytorch
@article{li2022deep,
title={Deep Hierarchical Semantic Segmentation},
author={Li, Liulei and Zhou, Tianfei and Wang, Wenguan and Li, Jianwu and Yang, Yi},
journal={CVPR},
year={2022}
}
Checklist
-
Milestone 1: PR-ready, and acceptable to be one of the
projects/
.-
Finish the code
-
Basic docstrings & proper citation
-
Test-time correctness
-
A full README
-
-
Milestone 2: Indicates a successful model implementation.
- Training-time correctness
-
Milestone 3: Good to be a part of our core package!
-
Type hints and docstrings
-
Unit tests
-
Code polishing
-
Metafile.yml
-
-
Move your modules into the core package following the codebase's file hierarchy structure.
-
Refactor your modules into the core package following the codebase's file hierarchy structure.