mmsegmentation/tests/test_models/test_backbones/test_icnet.py

51 lines
1.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmseg.models.backbones import ICNet
def test_icnet_backbone():
with pytest.raises(TypeError):
# Must give backbone dict in config file.
ICNet(
in_channels=3,
layer_channels=(128, 512),
light_branch_middle_channels=8,
psp_out_channels=128,
out_channels=(16, 128, 128),
backbone_cfg=None)
# Test ICNet Standard Forward
model = ICNet(
layer_channels=(128, 512),
backbone_cfg=dict(
type='ResNetV1c',
in_channels=3,
depth=18,
num_stages=4,
out_indices=(0, 1, 2, 3),
dilations=(1, 1, 2, 4),
strides=(1, 2, 1, 1),
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=False,
style='pytorch',
contract_dilation=True),
)
assert hasattr(model.backbone,
'maxpool') and model.backbone.maxpool.ceil_mode is True
model.init_weights()
model.train()
batch_size = 2
imgs = torch.randn(batch_size, 3, 32, 64)
feat = model(imgs)
assert model.psp_modules[0][0].output_size == 1
assert model.psp_modules[1][0].output_size == 2
assert model.psp_modules[2][0].output_size == 3
assert model.psp_bottleneck.padding == 1
assert model.conv_sub1[0].padding == 1
assert len(feat) == 3
assert feat[0].shape == torch.Size([batch_size, 64, 4, 8])