mmsegmentation/mmseg/core/evaluation/mean_iou.py

71 lines
2.7 KiB
Python

import numpy as np
def intersect_and_union(pred_label, label, num_classes, ignore_index):
"""Calculate intersection and Union.
Args:
pred_label (ndarray): Prediction segmentation map
label (ndarray): Ground truth segmentation map
num_classes (int): Number of categories
ignore_index (int): Index that will be ignored in evaluation.
Returns:
ndarray: The intersection of prediction and ground truth histogram
on all classes
ndarray: The union of prediction and ground truth histogram on all
classes
ndarray: The prediction histogram on all classes.
ndarray: The ground truth histogram on all classes.
"""
mask = (label != ignore_index)
pred_label = pred_label[mask]
label = label[mask]
intersect = pred_label[pred_label == label]
area_intersect, _ = np.histogram(
intersect, bins=np.arange(num_classes + 1))
area_pred_label, _ = np.histogram(
pred_label, bins=np.arange(num_classes + 1))
area_label, _ = np.histogram(label, bins=np.arange(num_classes + 1))
area_union = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def mean_iou(results, gt_seg_maps, num_classes, ignore_index):
"""Calculate Intersection and Union (IoU)
Args:
results (list[ndarray]): List of prediction segmentation maps
gt_seg_maps (list[ndarray]): list of ground truth segmentation maps
num_classes (int): Number of categories
ignore_index (int): Index that will be ignored in evaluation.
Returns:
float: Overall accuracy on all images.
ndarray: Per category accuracy, shape (num_classes, )
ndarray: Per category IoU, shape (num_classes, )
"""
num_imgs = len(results)
assert len(gt_seg_maps) == num_imgs
total_area_intersect = np.zeros((num_classes, ), dtype=np.float)
total_area_union = np.zeros((num_classes, ), dtype=np.float)
total_area_pred_label = np.zeros((num_classes, ), dtype=np.float)
total_area_label = np.zeros((num_classes, ), dtype=np.float)
for i in range(num_imgs):
area_intersect, area_union, area_pred_label, area_label = \
intersect_and_union(results[i], gt_seg_maps[i], num_classes,
ignore_index=ignore_index)
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
all_acc = total_area_intersect.sum() / total_area_label.sum()
acc = total_area_intersect / total_area_label
iou = total_area_intersect / total_area_union
return all_acc, acc, iou