Xu CAO e458a467d6
[Project] Support CAT-Seg from CVPR2023 (#3098)
Thanks for your contribution and we appreciate it a lot. The following
instructions would make your pull request more healthy and more easily
get feedback. If you do not understand some items, don't worry, just
make the pull request and seek help from maintainers.

## Motivation

Support CAT-Seg open-vocabulary semantic segmentation (CVPR2023).

## Modification

Support CAT-Seg open-vocabulary semantic segmentation (CVPR2023).
- [x] Support CAT-Seg model training.
- [x] CLIP model based `backbone` (R101 & Swin-B), aggregation layers
based `neck`, and `decoder` head.
  - [x] Provide customized coco-stuff164k_384x384 training configs.
- [x] Language model supports for `open vocabulary` (OV) tasks. 
  - [x] Support CLIP-based pretrained language model (LM) inference.
  - [x] Add commonly used prompts templates. 
- [x] Add README tutorials.
- [x] Add zero-shot testing scripts.

**Working on the following tasks.**
- [x] Add unit test.

## BC-breaking (Optional)

Does the modification introduce changes that break the
backward-compatibility of the downstream repos?
If so, please describe how it breaks the compatibility and how the
downstream projects should modify their code to keep compatibility with
this PR.

## Use cases (Optional)

If this PR introduces a new feature, it is better to list some use cases
here, and update the documentation.

## Checklist

1. Pre-commit or other linting tools are used to fix the potential lint
issues.
2. The modification is covered by complete unit tests. If not, please
add more unit test to ensure the correctness.
3. If the modification has potential influence on downstream projects,
this PR should be tested with downstream projects, like MMDet or
MMDet3D.
4. The documentation has been modified accordingly, like docstring or
example tutorials.

---------

Co-authored-by: xiexinch <xiexinch@outlook.com>
2023-08-09 23:57:30 +08:00

294 lines
12 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import json
import os
from typing import List
import torch
import torch.nn.functional as F
from huggingface_hub.utils._errors import LocalEntryNotFoundError
from mmengine.model import BaseModule
from mmseg.registry import MODELS
from mmseg.utils import ConfigType
from ..utils import clip_wrapper
from ..utils.clip_templates import (IMAGENET_TEMPLATES,
IMAGENET_TEMPLATES_SELECT)
@MODELS.register_module()
class CLIPOVCATSeg(BaseModule):
"""CLIP based Open Vocabulary CAT-Seg model backbone.
This backbone is the modified implementation of `CAT-Seg Backbone
<https://arxiv.org/abs/2303.11797>`_. It combines the CLIP model and
another feature extractor, a.k.a the appearance guidance extractor
in the original `CAT-Seg`.
Args:
feature_extractor (ConfigType): Appearance guidance extractor
config dict.
train_class_json (str): The training class json file.
test_class_json (str): The path to test class json file.
clip_pretrained (str): The pre-trained clip type.
clip_finetune (str): The finetuning settings of clip model.
custom_clip_weights (str): The custmized clip weights directory. When
encountering huggingface model download errors, you can manually
download the pretrained weights.
backbone_multiplier (float): The learning rate multiplier.
Default: 0.01.
prompt_depth (int): The prompt depth. Default: 0.
prompt_length (int): The prompt length. Default: 0.
prompt_ensemble_type (str): The prompt ensemble type.
Default: "imagenet".
pixel_mean (List[float]): The pixel mean for feature extractor.
pxiel_std (List[float]): The pixel std for feature extractor.
clip_pixel_mean (List[float]): The pixel mean for clip model.
clip_pxiel_std (List[float]): The pixel std for clip model.
clip_img_feat_size: (List[int]: Clip image embedding size from
image encoder.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(
self,
feature_extractor: ConfigType,
train_class_json: str,
test_class_json: str,
clip_pretrained: str,
clip_finetune: str,
custom_clip_weights: str = None,
backbone_multiplier=0.01,
prompt_depth: int = 0,
prompt_length: int = 0,
prompt_ensemble_type: str = 'imagenet',
pixel_mean: List[float] = [123.675, 116.280, 103.530],
pixel_std: List[float] = [58.395, 57.120, 57.375],
clip_pixel_mean: List[float] = [
122.7709383, 116.7460125, 104.09373615
],
clip_pixel_std: List[float] = [68.5005327, 66.6321579, 70.3231630],
clip_img_feat_size: List[int] = [24, 24],
init_cfg=None):
super().__init__(init_cfg=init_cfg)
# normalization parameters
self.register_buffer('pixel_mean',
torch.Tensor(pixel_mean).view(1, -1, 1, 1), False)
self.register_buffer('pixel_std',
torch.Tensor(pixel_std).view(1, -1, 1, 1), False)
self.register_buffer('clip_pixel_mean',
torch.Tensor(clip_pixel_mean).view(1, -1, 1, 1),
False)
self.register_buffer('clip_pixel_std',
torch.Tensor(clip_pixel_std).view(1, -1, 1, 1),
False)
self.clip_resolution = (
384, 384) if clip_pretrained == 'ViT-B/16' else (336, 336)
# modified clip image encoder with fixed size dense output
self.clip_img_feat_size = clip_img_feat_size
# prepare clip templates
self.prompt_ensemble_type = prompt_ensemble_type
if self.prompt_ensemble_type == 'imagenet_select':
prompt_templates = IMAGENET_TEMPLATES_SELECT
elif self.prompt_ensemble_type == 'imagenet':
prompt_templates = IMAGENET_TEMPLATES
elif self.prompt_ensemble_type == 'single':
prompt_templates = [
'A photo of a {} in the scene',
]
else:
raise NotImplementedError
self.prompt_templates = prompt_templates
# build the feature extractor
self.feature_extractor = MODELS.build(feature_extractor)
# build CLIP model
with open(train_class_json) as f_in:
self.class_texts = json.load(f_in)
with open(test_class_json) as f_in:
self.test_class_texts = json.load(f_in)
assert self.class_texts is not None
if self.test_class_texts is None:
self.test_class_texts = self.class_texts
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.tokenizer = None
if clip_pretrained == 'ViT-G' or clip_pretrained == 'ViT-H':
# for OpenCLIP models
import open_clip
name, pretrain = (
'ViT-H-14',
'laion2b_s32b_b79k') if clip_pretrained == 'ViT-H' else (
'ViT-bigG-14', 'laion2b_s39b_b160k')
try:
open_clip_model = open_clip.create_model_and_transforms(
name,
pretrained=pretrain,
device=device,
force_image_size=336,
)
clip_model, _, clip_preprocess = open_clip_model
except ConnectionError or LocalEntryNotFoundError as e:
print(f'Has {e} when loading weights from huggingface!')
print(
f'Will load {pretrain} weights from {custom_clip_weights}.'
)
assert custom_clip_weights is not None, 'Please specify custom weights directory.' # noqa
assert os.path.exists(
os.path.join(custom_clip_weights,
'open_clip_pytorch_model.bin')
), 'Please provide a valid directory for manually downloaded model.' # noqa
open_clip_model = open_clip.create_model_and_transforms(
name,
pretrained=None,
device='cpu',
force_image_size=336,
)
clip_model, _, clip_preprocess = open_clip_model
open_clip.load_checkpoint(
clip_model,
os.path.expanduser(
os.path.join(custom_clip_weights,
'open_clip_pytorch_model.bin')))
clip_model.to(torch.device(device))
self.tokenizer = open_clip.get_tokenizer(name)
else:
# for OpenAI models
clip_model, clip_preprocess = clip_wrapper.load(
clip_pretrained,
device=device,
jit=False,
prompt_depth=prompt_depth,
prompt_length=prompt_length)
# pre-encode classes text prompts
text_features = self.class_embeddings(self.class_texts,
prompt_templates, clip_model,
device).permute(1, 0, 2).float()
text_features_test = self.class_embeddings(self.test_class_texts,
prompt_templates,
clip_model,
device).permute(1, 0,
2).float()
self.register_buffer('text_features', text_features, False)
self.register_buffer('text_features_test', text_features_test, False)
# prepare CLIP model finetune
self.clip_finetune = clip_finetune
self.clip_model = clip_model.float()
self.clip_preprocess = clip_preprocess
for name, params in self.clip_model.named_parameters():
if 'visual' in name:
if clip_finetune == 'prompt':
params.requires_grad = True if 'prompt' in name else False
elif clip_finetune == 'attention':
if 'attn' in name or 'position' in name:
params.requires_grad = True
else:
params.requires_grad = False
elif clip_finetune == 'full':
params.requires_grad = True
else:
params.requires_grad = False
else:
params.requires_grad = False
finetune_backbone = backbone_multiplier > 0.
for name, params in self.feature_extractor.named_parameters():
if 'norm0' in name:
params.requires_grad = False
else:
params.requires_grad = finetune_backbone
@torch.no_grad()
def class_embeddings(self,
classnames,
templates,
clip_model,
device='cpu'):
"""Convert class names to text embeddings by clip model.
Args:
classnames (list): loaded from json file.
templates (dict): text template.
clip_model (nn.Module): prepared clip model.
device (str | torch.device): loading device of text
encoder results.
"""
zeroshot_weights = []
for classname in classnames:
if ', ' in classname:
classname_splits = classname.split(', ')
texts = []
for template in templates:
for cls_split in classname_splits:
texts.append(template.format(cls_split))
else:
texts = [template.format(classname)
for template in templates] # format with class
if self.tokenizer is not None:
texts = self.tokenizer(texts).to(device)
else:
texts = clip_wrapper.tokenize(texts).to(device)
class_embeddings = clip_model.encode_text(texts)
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
if len(templates) != class_embeddings.shape[0]:
class_embeddings = class_embeddings.reshape(
len(templates), -1, class_embeddings.shape[-1]).mean(dim=1)
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings
zeroshot_weights.append(class_embedding)
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(device)
return zeroshot_weights
def custom_normalize(self, inputs):
"""Input normalization for clip model and feature extractor
respectively.
Args:
inputs: batched input images.
"""
# clip images
batched_clip = (inputs - self.clip_pixel_mean) / self.clip_pixel_std
batched_clip = F.interpolate(
batched_clip,
size=self.clip_resolution,
mode='bilinear',
align_corners=False)
# feature extractor images
batched = (inputs - self.pixel_mean) / self.pixel_std
return batched, batched_clip
def forward(self, inputs):
"""
Args:
inputs: minibatch image. (B, 3, H, W)
Returns:
outputs (dict):
'appearance_feat': list[torch.Tensor], w.r.t. out_indices of
`self.feature_extractor`.
'clip_text_feat': the text feature extracted by clip text encoder.
'clip_text_feat_test': the text feature extracted by clip text
encoder for testing.
'clip_img_feat': the image feature extracted clip image encoder.
"""
inputs, clip_inputs = self.custom_normalize(inputs)
outputs = dict()
# extract appearance guidance feature
outputs['appearance_feat'] = self.feature_extractor(inputs)
# extract clip features
outputs['clip_text_feat'] = self.text_features
outputs['clip_text_feat_test'] = self.text_features_test
clip_features = self.clip_model.encode_image(
clip_inputs, dense=True) # B, 577(24x24+1), C
B = clip_features.size(0)
outputs['clip_img_feat'] = clip_features[:, 1:, :].permute(
0, 2, 1).reshape(B, -1, *self.clip_img_feat_size)
return outputs