312 lines
9.4 KiB
YAML
312 lines
9.4 KiB
YAML
Collections:
|
|
- Name: GCNet
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- Pascal VOC 2012 + Aug
|
|
- ADE20K
|
|
|
|
Models:
|
|
|
|
- Name: gcnet_r50-d8_512x1024_40k_cityscapes
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 254.45
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.69
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes/gcnet_r50-d8_512x1024_40k_cityscapes_20200618_074436-4b0fd17b.pth
|
|
Config: configs/gcnet/gcnet_r50-d8_512x1024_40k_cityscapes.py
|
|
|
|
|
|
|
|
- Name: gcnet_r101-d8_512x1024_40k_cityscapes
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 383.14
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.28
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes/gcnet_r101-d8_512x1024_40k_cityscapes_20200618_074436-5e62567f.pth
|
|
Config: configs/gcnet/gcnet_r101-d8_512x1024_40k_cityscapes.py
|
|
|
|
|
|
|
|
- Name: gcnet_r50-d8_769x769_40k_cityscapes
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 598.8
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.12
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_40k_cityscapes/gcnet_r50-d8_769x769_40k_cityscapes_20200618_182814-a26f4471.pth
|
|
Config: configs/gcnet/gcnet_r50-d8_769x769_40k_cityscapes.py
|
|
|
|
|
|
|
|
- Name: gcnet_r101-d8_769x769_40k_cityscapes
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 884.96
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.95
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_40k_cityscapes/gcnet_r101-d8_769x769_40k_cityscapes_20200619_092550-ca4f0a84.pth
|
|
Config: configs/gcnet/gcnet_r101-d8_769x769_40k_cityscapes.py
|
|
|
|
|
|
|
|
- Name: gcnet_r50-d8_512x1024_80k_cityscapes
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 254.45
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.48
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes/gcnet_r50-d8_512x1024_80k_cityscapes_20200618_074450-ef8f069b.pth
|
|
Config: configs/gcnet/gcnet_r50-d8_512x1024_80k_cityscapes.py
|
|
|
|
|
|
|
|
- Name: gcnet_r101-d8_512x1024_80k_cityscapes
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 383.14
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.03
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes/gcnet_r101-d8_512x1024_80k_cityscapes_20200618_074450-778ebf69.pth
|
|
Config: configs/gcnet/gcnet_r101-d8_512x1024_80k_cityscapes.py
|
|
|
|
|
|
|
|
- Name: gcnet_r50-d8_769x769_80k_cityscapes
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 598.8
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.68
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_769x769_80k_cityscapes/gcnet_r50-d8_769x769_80k_cityscapes_20200619_092516-4839565b.pth
|
|
Config: configs/gcnet/gcnet_r50-d8_769x769_80k_cityscapes.py
|
|
|
|
|
|
|
|
- Name: gcnet_r101-d8_769x769_80k_cityscapes
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 884.96
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.18
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_769x769_80k_cityscapes/gcnet_r101-d8_769x769_80k_cityscapes_20200619_092628-8e043423.pth
|
|
Config: configs/gcnet/gcnet_r101-d8_769x769_80k_cityscapes.py
|
|
|
|
|
|
|
|
- Name: gcnet_r50-d8_512x512_80k_ade20k
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 42.77
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 41.47
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_80k_ade20k/gcnet_r50-d8_512x512_80k_ade20k_20200614_185146-91a6da41.pth
|
|
Config: configs/gcnet/gcnet_r50-d8_512x512_80k_ade20k.py
|
|
|
|
|
|
|
|
- Name: gcnet_r101-d8_512x512_80k_ade20k
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 65.79
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.82
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_80k_ade20k/gcnet_r101-d8_512x512_80k_ade20k_20200615_020811-c3fcb6dd.pth
|
|
Config: configs/gcnet/gcnet_r101-d8_512x512_80k_ade20k.py
|
|
|
|
|
|
|
|
- Name: gcnet_r50-d8_512x512_160k_ade20k
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 42.77
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.37
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_160k_ade20k/gcnet_r50-d8_512x512_160k_ade20k_20200615_224122-d95f3e1f.pth
|
|
Config: configs/gcnet/gcnet_r50-d8_512x512_160k_ade20k.py
|
|
|
|
|
|
|
|
- Name: gcnet_r101-d8_512x512_160k_ade20k
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 65.79
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.69
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_160k_ade20k/gcnet_r101-d8_512x512_160k_ade20k_20200615_225406-615528d7.pth
|
|
Config: configs/gcnet/gcnet_r101-d8_512x512_160k_ade20k.py
|
|
|
|
|
|
|
|
- Name: gcnet_r50-d8_512x512_20k_voc12aug
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 42.83
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.42
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_20k_voc12aug/gcnet_r50-d8_512x512_20k_voc12aug_20200617_165701-3cbfdab1.pth
|
|
Config: configs/gcnet/gcnet_r50-d8_512x512_20k_voc12aug.py
|
|
|
|
|
|
|
|
- Name: gcnet_r101-d8_512x512_20k_voc12aug
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 67.57
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.41
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_20k_voc12aug/gcnet_r101-d8_512x512_20k_voc12aug_20200617_165713-6c720aa9.pth
|
|
Config: configs/gcnet/gcnet_r101-d8_512x512_20k_voc12aug.py
|
|
|
|
|
|
|
|
- Name: gcnet_r50-d8_512x512_40k_voc12aug
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 42.83
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.24
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r50-d8_512x512_40k_voc12aug/gcnet_r50-d8_512x512_40k_voc12aug_20200613_195105-9797336d.pth
|
|
Config: configs/gcnet/gcnet_r50-d8_512x512_40k_voc12aug.py
|
|
|
|
|
|
|
|
- Name: gcnet_r101-d8_512x512_40k_voc12aug
|
|
In Collection: GCNet
|
|
Metadata:
|
|
inference time (ms/im):
|
|
- value: 67.57
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.84
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/gcnet/gcnet_r101-d8_512x512_40k_voc12aug/gcnet_r101-d8_512x512_40k_voc12aug_20200613_185806-1e38208d.pth
|
|
Config: configs/gcnet/gcnet_r101-d8_512x512_40k_voc12aug.py
|