mmsegmentation/configs/fcn/metafile.yml
谢昕辰 a95f6d8173
[Feature] support mim (#549)
* dice loss

* format code, add docstring and calculate denominator without valid_mask

* minor change

* restore

* add metafile

* add manifest.in and add config at setup.py

* add requirements

* modify manifest

* modify manifest

* Update MANIFEST.in

* add metafile

* add metadata

* fix typo

* Update metafile.yml

* Update metafile.yml

* minor change

* Update metafile.yml

* add subfix

* fix mmshow

* add more  metafile

* add config to model_zoo

* fix bug

* Update mminstall.txt

* [fix] Add models

* [Fix] Add collections

* [fix] Modify collection name

* [Fix] Set datasets to unet metafile

* [Fix] Modify collection names

* complement inference time
2021-05-31 15:07:24 -07:00

520 lines
17 KiB
YAML

Collections:
- Name: FCN
Metadata:
Training Data:
- Cityscapes
- Pascal Context
- Pascal VOC 2012 + Aug
- ADE20K
- Name: FCN-D6
Metadata:
Training Data:
- Cityscapes
- Pascal Context
- Pascal VOC 2012 + Aug
- ADE20K
Models:
- Name: fcn_r50-d8_512x1024_40k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 4.17
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 72.25
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_40k_cityscapes/fcn_r50-d8_512x1024_40k_cityscapes_20200604_192608-efe53f0d.pth
Config: configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py
- Name: fcn_r101-d8_512x1024_40k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 2.66
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.45
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_40k_cityscapes/fcn_r101-d8_512x1024_40k_cityscapes_20200604_181852-a883d3a1.pth
Config: configs/fcn/fcn_r101-d8_512x1024_40k_cityscapes.py
- Name: fcn_r50-d8_769x769_40k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 1.80
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 71.47
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_40k_cityscapes/fcn_r50-d8_769x769_40k_cityscapes_20200606_113104-977b5d02.pth
Config: configs/fcn/fcn_r50-d8_769x769_40k_cityscapes.py
- Name: fcn_r101-d8_769x769_40k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 1.19
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 73.93
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_40k_cityscapes/fcn_r101-d8_769x769_40k_cityscapes_20200606_113208-7d4ab69c.pth
Config: configs/fcn/fcn_r101-d8_769x769_40k_cityscapes.py
- Name: fcn_r18-d8_512x1024_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 14.65
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 71.11
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_512x1024_80k_cityscapes/fcn_r18-d8_512x1024_80k_cityscapes_20201225_021327-6c50f8b4.pth
Config: configs/fcn/fcn_r18-d8_512x1024_80k_cityscapes.py
- Name: fcn_r50-d8_512x1024_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 4.17
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 73.61
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x1024_80k_cityscapes/fcn_r50-d8_512x1024_80k_cityscapes_20200606_113019-03aa804d.pth
Config: configs/fcn/fcn_r50-d8_512x1024_80k_cityscapes.py
- Name: fcn_r101-d8_512x1024_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 2.66
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.13
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x1024_80k_cityscapes/fcn_r101-d8_512x1024_80k_cityscapes_20200606_113038-3fb937eb.pth
Config: configs/fcn/fcn_r101-d8_512x1024_80k_cityscapes.py
- Name: fcn_r18-d8_769x769_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 6.40
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 70.80
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18-d8_769x769_80k_cityscapes/fcn_r18-d8_769x769_80k_cityscapes_20201225_021451-9739d1b8.pth
Config: configs/fcn/fcn_r18-d8_769x769_80k_cityscapes.py
- Name: fcn_r50-d8_769x769_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 1.80
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 72.64
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_769x769_80k_cityscapes/fcn_r50-d8_769x769_80k_cityscapes_20200606_195749-f5caeabc.pth
Config: configs/fcn/fcn_r50-d8_769x769_80k_cityscapes.py
- Name: fcn_r101-d8_769x769_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 1.19
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.52
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_769x769_80k_cityscapes/fcn_r101-d8_769x769_80k_cityscapes_20200606_214354-45cbac68.pth
Config: configs/fcn/fcn_r101-d8_769x769_80k_cityscapes.py
- Name: fcn_r18b-d8_512x1024_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 16.74
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 70.24
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_512x1024_80k_cityscapes/fcn_r18b-d8_512x1024_80k_cityscapes_20201225_230143-92c0f445.pth
Config: configs/fcn/fcn_r18b-d8_512x1024_80k_cityscapes.py
- Name: fcn_r50b-d8_512x1024_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 4.20
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.65
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_512x1024_80k_cityscapes/fcn_r50b-d8_512x1024_80k_cityscapes_20201225_094221-82957416.pth
Config: configs/fcn/fcn_r50b-d8_512x1024_80k_cityscapes.py
- Name: fcn_r101b-d8_512x1024_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 2.73
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.37
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_512x1024_80k_cityscapes/fcn_r101b-d8_512x1024_80k_cityscapes_20201226_160213-4543858f.pth
Config: configs/fcn/fcn_r101b-d8_512x1024_80k_cityscapes.py
- Name: fcn_r18b-d8_769x769_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 6.70
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 69.66
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth
Config: configs/fcn/fcn_r18b-d8_769x769_80k_cityscapes.py
- Name: fcn_r50b-d8_769x769_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 1.82
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 73.83
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth
Config: configs/fcn/fcn_r50b-d8_769x769_80k_cityscapes.py
- Name: fcn_r101b-d8_769x769_80k_cityscapes
In Collection: FCN
Metadata:
inference time (fps): 1.15
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.02
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth
Config: configs/fcn/fcn_r101b-d8_769x769_80k_cityscapes.py
- Name: fcn_d6_r50-d16_512x1024_40k_cityscapes
In Collection: FCN-D6
Metadata:
inference time (fps): 10.22
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.06
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-98d5d1bc.pth
Config: configs/fcn-d6/fcn_d6_r50-d16_512x1024_40k_cityscapes.py
- Name: fcn_d6_r50-d16_512x1024_80k_cityscapes
In Collection: FCN-D6
Metadata:
inference time (fps): 10.35
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.27
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-98d5d1bc.pth
Config: configs/fcn-d6/fcn_d6_r50-d16_512x1024_80k_cityscapes.py
- Name: fcn_d6_r50-d16_769x769_40k_cityscapes
In Collection: FCN-D6
Metadata:
inference time (fps): 4.17
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 76.82
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-1aab18ed.pth
Config: configs/fcn-d6/fcn_d6_r50-d16_769x769_40k_cityscapes.py
- Name: fcn_d6_r50-d16_769x769_80k_cityscapes
In Collection: FCN-D6
Metadata:
inference time (fps): 4.15
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.04
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-109d88eb.pth
Config: configs/fcn-d6/fcn_d6_r50-d16_769x769_80k_cityscapes.py
- Name: fcn_d6_r101-d16_512x1024_40k_cityscapes
In Collection: FCN-D6
Metadata:
inference time (fps): 8.04
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.36
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-9cf2b450.pth
Config: configs/fcn-d6/fcn_d6_r101-d16_512x1024_40k_cityscapes.py
- Name: fcn_d6_r101-d16_512x1024_80k_cityscapes
In Collection: FCN-D6
Metadata:
inference time (fps): 8.26
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.46
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-cb336445.pth
Config: configs/fcn-d6/fcn_d6_r101-d16_512x1024_80k_cityscapes.py
- Name: fcn_d6_r101-d16_769x769_40k_cityscapes
In Collection: FCN-D6
Metadata:
inference time (fps): 3.12
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.28
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-60b114e9.pth
Config: configs/fcn-d6/fcn_d6_r101-d16_769x769_40k_cityscapes.py
- Name: fcn_d6_r101-d16_769x769_80k_cityscapes
In Collection: FCN-D6
Metadata:
inference time (fps): 3.21
Results:
- Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.06
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-e33adc4f.pth
Config: configs/fcn-d6/fcn_d6_r101-d16_769x769_80k_cityscapes.py
- Name: fcn_r50-d8_512x512_80k_ade20k
In Collection: FCN
Metadata:
inference time (fps): 23.49
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 35.94
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_80k_ade20k/fcn_r50-d8_512x512_80k_ade20k_20200614_144016-f8ac5082.pth
Config: configs/fcn/fcn_r50-d8_512x512_80k_ade20k.py
- Name: fcn_r101-d8_512x512_80k_ade20k
In Collection: FCN
Metadata:
inference time (fps): 14.78
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 39.61
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_80k_ade20k/fcn_r101-d8_512x512_80k_ade20k_20200615_014143-bc1809f7.pth
Config: configs/fcn/fcn_r101-d8_512x512_80k_ade20k.py
- Name: fcn_r50-d8_512x512_160k_ade20k
In Collection: FCN
Metadata:
inference time (fps): 23.49
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 36.10
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_160k_ade20k/fcn_r50-d8_512x512_160k_ade20k_20200615_100713-4edbc3b4.pth
Config: configs/fcn/fcn_r50-d8_512x512_160k_ade20k.py
- Name: fcn_r101-d8_512x512_160k_ade20k
In Collection: FCN
Metadata:
inference time (fps): 14.78
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 39.91
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_160k_ade20k/fcn_r101-d8_512x512_160k_ade20k_20200615_105816-fd192bd5.pth
Config: configs/fcn/fcn_r101-d8_512x512_160k_ade20k.py
- Name: fcn_r50-d8_512x512_20k_voc12aug
In Collection: FCN
Metadata:
inference time (fps): 23.28
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 67.08
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_20k_voc12aug/fcn_r50-d8_512x512_20k_voc12aug_20200617_010715-52dc5306.pth
Config: configs/fcn/fcn_r50-d8_512x512_20k_voc12aug.py
- Name: fcn_r101-d8_512x512_20k_voc12aug
In Collection: FCN
Metadata:
inference time (fps): 14.81
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 71.16
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_20k_voc12aug/fcn_r101-d8_512x512_20k_voc12aug_20200617_010842-0bb4e798.pth
Config: configs/fcn/fcn_r101-d8_512x512_20k_voc12aug.py
- Name: fcn_r50-d8_512x512_40k_voc12aug
In Collection: FCN
Metadata:
inference time (fps): 23.28
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 66.97
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50-d8_512x512_40k_voc12aug/fcn_r50-d8_512x512_40k_voc12aug_20200613_161222-5e2dbf40.pth
Config: configs/fcn/fcn_r50-d8_512x512_40k_voc12aug.py
- Name: fcn_r101-d8_512x512_40k_voc12aug
In Collection: FCN
Metadata:
inference time (fps): 14.81
Results:
- Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 69.91
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_512x512_40k_voc12aug/fcn_r101-d8_512x512_40k_voc12aug_20200613_161240-4c8bcefd.pth
Config: configs/fcn/fcn_r101-d8_512x512_40k_voc12aug.py
- Name: fcn_r101-d8_480x480_40k_pascal_context
In Collection: FCN
Metadata:
inference time (fps): 9.93
Results:
- Task: Semantic Segmentation
Dataset: Pascal Context
Metrics:
mIoU: 44.43
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context-20210421_154757-b5e97937.pth
Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context.py
- Name: fcn_r101-d8_480x480_80k_pascal_context
In Collection: FCN
Metadata:
inference time (fps): 9.93
Results:
- Task: Semantic Segmentation
Dataset: Pascal Context
Metrics:
mIoU: 44.13
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context-20210421_163310-4711813f.pth
Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context.py
- Name: fcn_r101-d8_480x480_40k_pascal_context_59
In Collection: FCN
Metadata:
inference time (fps): None
Results:
- Task: Semantic Segmentation
Dataset: Pascal Context
Metrics:
mIoU: 48.42
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context_59/fcn_r101-d8_480x480_40k_pascal_context_59_20210415_230724-8cf83682.pth
Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context_59.py
- Name: fcn_r101-d8_480x480_80k_pascal_context_59
In Collection: FCN
Metadata:
inference time (fps): None
Results:
- Task: Semantic Segmentation
Dataset: Pascal Context
Metrics:
mIoU: 49.35
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context_59/fcn_r101-d8_480x480_80k_pascal_context_59_20210416_110804-9a6f2c94.pth
Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context_59.py