mmsegmentation/mmseg/utils/inverted_residual_module.py
John Zhu f6b9da55f3 Fast-SCNN implemented (#58)
* init commit: fast_scnn

* 247917iters

* 4x8_80k

* configs placed in configs_unify.  4x8_80k exp.running.

* mmseg/utils/collect_env.py modified to support Windows

* study on lr

* bug in configs_unify/***/cityscapes.py fixed.

* lr0.08_100k

* lr_power changed to 1.2

* log_config by_epoch set to False.

* lr1.2

* doc strings added

* add fast_scnn backbone  test

* 80k 0.08,0.12

* add 450k

* fast_scnn test: fix BN bug.

* Add different config files into configs/

* .gitignore recovered.

* configs_unify del

* .gitignore recovered.

* delete sub-optimal config files of fast-scnn

* Code style improved.

* add docstrings to component modules of fast-scnn

* relevant files modified according to Jerry's instructions

* relevant files modified according to Jerry's instructions

* lint problems fixed.

* fast_scnn config extremely simplified.

* InvertedResidual

* fixed padding problems

* add unit test for inverted_residual

* add unit test for inverted_residual: debug 0

* add unit test for inverted_residual: debug 1

* add unit test for inverted_residual: debug 2

* add unit test for inverted_residual: debug 3

* add unit test for sep_fcn_head: debug 0

* add unit test for sep_fcn_head: debug 1

* add unit test for sep_fcn_head: debug 2

* add unit test for sep_fcn_head: debug 3

* add unit test for sep_fcn_head: debug 4

* add unit test for sep_fcn_head: debug 5

* FastSCNN type(dwchannels) changed to tuple.

* t changed to expand_ratio.

* Spaces fixed.

* Update mmseg/models/backbones/fast_scnn.py

Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>

* Update mmseg/models/decode_heads/sep_fcn_head.py

Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>

* Update mmseg/models/decode_heads/sep_fcn_head.py

Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>

* Docstrings fixed.

* Docstrings fixed.

* Inverted Residual kept coherent with mmcl.

* Inverted Residual kept coherent with mmcl. Debug 0

* _make_layer parameters renamed.

* final commit

* Arg scale_factor deleted.

* Expand_ratio docstrings updated.

* final commit

* Readme for Fast-SCNN added.

* model-zoo.md modified.

* fast_scnn README updated.

* Move InvertedResidual module into mmseg/utils.

* test_inverted_residual module corrected.

* test_inverted_residual.py moved.

* encoder_decoder modified to avoid bugs when running PSPNet.
getting_started.md bug fixed.

* Revert "encoder_decoder modified to avoid bugs when running PSPNet. "

This reverts commit dd0aadfb

Co-authored-by: Jerry Jiarui XU <xvjiarui0826@gmail.com>
2020-08-18 23:33:05 +08:00

74 lines
2.4 KiB
Python

from mmcv.cnn import ConvModule, build_norm_layer
from torch import nn
class InvertedResidual(nn.Module):
"""Inverted residual module.
Args:
in_channels (int): The input channels of the InvertedResidual block.
out_channels (int): The output channels of the InvertedResidual block.
stride (int): Stride of the middle (first) 3x3 convolution.
expand_ratio (int): adjusts number of channels of the hidden layer
in InvertedResidual by this amount.
conv_cfg (dict): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU6').
"""
def __init__(self,
in_channels,
out_channels,
stride,
expand_ratio,
dilation=1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU6')):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(in_channels * expand_ratio))
self.use_res_connect = self.stride == 1 \
and in_channels == out_channels
layers = []
if expand_ratio != 1:
# pw
layers.append(
ConvModule(
in_channels,
hidden_dim,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
layers.extend([
# dw
ConvModule(
hidden_dim,
hidden_dim,
kernel_size=3,
padding=dilation,
stride=stride,
dilation=dilation,
groups=hidden_dim,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg),
# pw-linear
nn.Conv2d(hidden_dim, out_channels, 1, 1, 0, bias=False),
build_norm_layer(norm_cfg, out_channels)[1],
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)