mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-02 22:55:24 +08:00
441 lines
14 KiB
YAML
441 lines
14 KiB
YAML
Collections:
|
|
- Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
- Pascal VOC 2012 + Aug
|
|
- Pascal Context
|
|
- Pascal Context 59
|
|
Name: hrnet
|
|
Models:
|
|
- Config: configs/hrnet/fcn_hr18s_512x1024_40k_cityscapes.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 42.12
|
|
lr schd: 40000
|
|
memory (GB): 1.7
|
|
Name: fcn_hr18s_512x1024_40k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.86
|
|
mIoU(ms+flip): 75.91
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216-93db27d0.pth
|
|
- Config: configs/hrnet/fcn_hr18_512x1024_40k_cityscapes.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 77.1
|
|
lr schd: 40000
|
|
memory (GB): 2.9
|
|
Name: fcn_hr18_512x1024_40k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.19
|
|
mIoU(ms+flip): 78.92
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216-f196fb4e.pth
|
|
- Config: configs/hrnet/fcn_hr48_512x1024_40k_cityscapes.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
value: 155.76
|
|
lr schd: 40000
|
|
memory (GB): 6.2
|
|
Name: fcn_hr48_512x1024_40k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.48
|
|
mIoU(ms+flip): 79.69
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240-a989b146.pth
|
|
- Config: configs/hrnet/fcn_hr18s_512x1024_80k_cityscapes.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Name: fcn_hr18s_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.31
|
|
mIoU(ms+flip): 77.48
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700-1462b75d.pth
|
|
- Config: configs/hrnet/fcn_hr18_512x1024_80k_cityscapes.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Name: fcn_hr18_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.65
|
|
mIoU(ms+flip): 80.35
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255-4e7b345e.pth
|
|
- Config: configs/hrnet/fcn_hr48_512x1024_80k_cityscapes.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Name: fcn_hr48_512x1024_80k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.93
|
|
mIoU(ms+flip): 80.72
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606-58ea95d6.pth
|
|
- Config: configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Name: fcn_hr18s_512x1024_160k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.31
|
|
mIoU(ms+flip): 78.31
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth
|
|
- Config: configs/hrnet/fcn_hr18_512x1024_160k_cityscapes.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Name: fcn_hr18_512x1024_160k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.8
|
|
mIoU(ms+flip): 80.74
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822-221e4a4f.pth
|
|
- Config: configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Name: fcn_hr48_512x1024_160k_cityscapes
|
|
Results:
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.65
|
|
mIoU(ms+flip): 81.92
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth
|
|
- Config: configs/hrnet/fcn_hr18s_512x512_80k_ade20k.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 25.87
|
|
lr schd: 80000
|
|
memory (GB): 3.8
|
|
Name: fcn_hr18s_512x512_80k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 31.38
|
|
mIoU(ms+flip): 32.45
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345-77fc814a.pth
|
|
- Config: configs/hrnet/fcn_hr18_512x512_80k_ade20k.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 44.31
|
|
lr schd: 80000
|
|
memory (GB): 4.9
|
|
Name: fcn_hr18_512x512_80k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 35.51
|
|
mIoU(ms+flip): 36.8
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20200614_185145-66f20cb7.pth
|
|
- Config: configs/hrnet/fcn_hr48_512x512_80k_ade20k.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 47.1
|
|
lr schd: 80000
|
|
memory (GB): 8.2
|
|
Name: fcn_hr48_512x512_80k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 41.9
|
|
mIoU(ms+flip): 43.27
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946-7ba5258d.pth
|
|
- Config: configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Name: fcn_hr18s_512x512_160k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 33.0
|
|
mIoU(ms+flip): 34.55
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20200614_214413-870f65ac.pth
|
|
- Config: configs/hrnet/fcn_hr18_512x512_160k_ade20k.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Name: fcn_hr18_512x512_160k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 36.79
|
|
mIoU(ms+flip): 38.58
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426-ca961836.pth
|
|
- Config: configs/hrnet/fcn_hr48_512x512_160k_ade20k.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Name: fcn_hr48_512x512_160k_ade20k
|
|
Results:
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.02
|
|
mIoU(ms+flip): 43.86
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth
|
|
- Config: configs/hrnet/fcn_hr18s_512x512_20k_voc12aug.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 23.06
|
|
lr schd: 20000
|
|
memory (GB): 1.8
|
|
Name: fcn_hr18s_512x512_20k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 65.2
|
|
mIoU(ms+flip): 68.55
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20200617_224503-56e36088.pth
|
|
- Config: configs/hrnet/fcn_hr18_512x512_20k_voc12aug.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 42.59
|
|
lr schd: 20000
|
|
memory (GB): 2.9
|
|
Name: fcn_hr18_512x512_20k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 72.3
|
|
mIoU(ms+flip): 74.71
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503-488d45f7.pth
|
|
- Config: configs/hrnet/fcn_hr48_512x512_20k_voc12aug.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
value: 45.35
|
|
lr schd: 20000
|
|
memory (GB): 6.2
|
|
Name: fcn_hr48_512x512_20k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 75.87
|
|
mIoU(ms+flip): 78.58
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419-89de05cd.pth
|
|
- Config: configs/hrnet/fcn_hr18s_512x512_40k_voc12aug.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Name: fcn_hr18s_512x512_40k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 66.61
|
|
mIoU(ms+flip): 70.0
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648-4f8d6e7f.pth
|
|
- Config: configs/hrnet/fcn_hr18_512x512_40k_voc12aug.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Name: fcn_hr18_512x512_40k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 72.9
|
|
mIoU(ms+flip): 75.59
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401-1b4b76cd.pth
|
|
- Config: configs/hrnet/fcn_hr48_512x512_40k_voc12aug.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Name: fcn_hr48_512x512_40k_voc12aug
|
|
Results:
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.24
|
|
mIoU(ms+flip): 78.49
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111-1b0f18bc.pth
|
|
- Config: configs/hrnet/fcn_hr48_480x480_40k_pascal_context.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (480,480)
|
|
inference time (ms/im):
|
|
- backend: PyTorch
|
|
batch size: 1
|
|
hardware: V100
|
|
mode: FP32
|
|
resolution: (480,480)
|
|
value: 112.87
|
|
lr schd: 40000
|
|
memory (GB): 6.1
|
|
Name: fcn_hr48_480x480_40k_pascal_context
|
|
Results:
|
|
Dataset: Pascal Context
|
|
Metrics:
|
|
mIoU: 45.14
|
|
mIoU(ms+flip): 47.42
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context_20200911_164852-667d00b0.pth
|
|
- Config: configs/hrnet/fcn_hr48_480x480_80k_pascal_context.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (480,480)
|
|
lr schd: 80000
|
|
Name: fcn_hr48_480x480_80k_pascal_context
|
|
Results:
|
|
Dataset: Pascal Context
|
|
Metrics:
|
|
mIoU: 45.84
|
|
mIoU(ms+flip): 47.84
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context_20200911_155322-847a6711.pth
|
|
- Config: configs/hrnet/fcn_hr48_480x480_40k_pascal_context_59.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (480,480)
|
|
lr schd: 40000
|
|
Name: fcn_hr48_480x480_40k_pascal_context_59
|
|
Results:
|
|
Dataset: Pascal Context 59
|
|
Metrics:
|
|
mIoU: 50.33
|
|
mIoU(ms+flip): 52.83
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth
|
|
- Config: configs/hrnet/fcn_hr48_480x480_80k_pascal_context_59.py
|
|
In Collection: hrnet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (480,480)
|
|
lr schd: 80000
|
|
Name: fcn_hr48_480x480_80k_pascal_context_59
|
|
Results:
|
|
Dataset: Pascal Context 59
|
|
Metrics:
|
|
mIoU: 51.12
|
|
mIoU(ms+flip): 53.56
|
|
Task: Semantic Segmentation
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth
|