* Adjust vision transformer backbone architectures; * Add DropPath, trunc_normal_ for VisionTransformer implementation; * Add class token buring intermediate period and remove it during final period; * Fix some parameters loss bug; * * Store intermediate token features and impose no processes on them; * Remove class token and reshape entire token feature from NLC to NCHW; * Fix some doc error * Add a arg for VisionTransformer backbone to control if input class token into transformer; * Add stochastic depth decay rule for DropPath; * * Fix output bug when input_cls_token=False; * Add related unit test; * Re-implement of SETR * Add two head -- SETRUPHead (Naive, PUP) & SETRMLAHead (MLA); * * Modify some docs of heads of SETR; * Add MLA auxiliary head of SETR; * * Modify some arg of setr heads; * Add unit test for setr heads; * * Add 768x768 cityscapes dataset config; * Add Backbone: SETR -- Backbone: MLA, PUP, Naive; * Add SETR cityscapes training & testing config; * * Fix the low code coverage of unit test about heads of setr; * Remove some rebundant error capture; * * Add pascal context dataset & ade20k dataset config; * Modify auxiliary head relative config; * Modify folder structure. * add setr * modify vit * Fix the test_cfg arg position; * Fix some learning schedule bug; * optimize setr code * Add arg: final_reshape to control if converting output feature information from NLC to NCHW; * Fix the default value of final_reshape; * Modify arg: final_reshape to arg: out_shape; * Fix some unit test bug; * Add MLA neck; * Modify setr configs to add MLA neck; * Modify MLA decode head to remove rebundant structure; * Remove some rebundant files. * * Fix the code style bug; * Remove some rebundant files; * Modify some unit tests of SETR; * Ignoring CityscapesCoarseDataset and MapillaryDataset. * Fix the activation function loss bug; * Fix the img_size bug of SETR_PUP_ADE20K * * Fix the lint bug of transformers.py; * Add mla neck unit test; * Convert vit of setr out shape from NLC to NCHW. * * Modify Resize action of data pipeline; * Fix deit related bug; * Set find_unused_parameters=False for pascal context dataset; * Remove arg: find_unused_parameters which is False by default. * Error auxiliary head of PUP deit * Remove the minimal restrict of slide inference. * Modify doc string of Resize * Seperate this part of code to a new PR #544 * * Remove some rebundant codes; * Modify unit tests of SETR heads; * Fix the tuple in_channels of mla_deit. * Modify code style * Move detailed definition of auxiliary head into model config dict; * Add some setr config for default cityscapes.py; * Fix the doc string of SETR head; * Modify implementation of SETR Heads * Remove setr aux head and use fcn head to replace it; * Remove arg: img_size and remove last interpolate op of heads; * Rename arg: conv3x3_conv1x1 to kernel_size of SETRUPHead; * non-square input support for setr heads * Modify config argument for above commits * Remove norm_layer argument of SETRMLAHead * Add mla_align_corners for MLAModule interpolate * [Refactor]Refactor of SETRMLAHead * Modify Head implementation; * Modify Head unit test; * Modify related config file; * [Refactor]MLA Neck * Fix config bug * [Refactor]SETR Naive Head and SETR PUP Head * [Fix]Fix the lack of arg: act_cfg and arg: norm_cfg * Fix config error * Refactor of SETR MLA, Naive, PUP heads. * Modify some attribute name of SETR Heads. * Modify setr configs to adapt new vit code. * Fix trunc_normal_ bug * Parameters init adjustment. * Remove redundant doc string of SETRUPHead * Fix pretrained bug * [Fix] Fix vit init bug * Add some vit unit tests * Modify module import * Remove norm from PatchEmbed * Fix pretrain weights bug * Modify pretrained judge * Fix some gradient backward bugs. * Add some unit tests to improve code cov * Fix init_weights of setr up head * Add DropPath in FFN * Finish benchmark of SETR 1. Add benchmark information into README.MD of SETR; 2. Fix some name bugs of vit; * Remove DropPath implementation and use DropPath from mmcv. * Modify out_indices arg * Fix out_indices bug. * Remove cityscapes base dataset config. Co-authored-by: sennnnn <201730271412@mail.scut.edu.cn> Co-authored-by: CuttlefishXuan <zhaoxinxuan1997@gmail.com>
Documentation: https://mmsegmentation.readthedocs.io/
English | 简体中文
Introduction
MMSegmentation is an open source semantic segmentation toolbox based on PyTorch. It is a part of the OpenMMLab project.
The master branch works with PyTorch 1.3+.
Major features
-
Unified Benchmark
We provide a unified benchmark toolbox for various semantic segmentation methods.
-
Modular Design
We decompose the semantic segmentation framework into different components and one can easily construct a customized semantic segmentation framework by combining different modules.
-
Support of multiple methods out of box
The toolbox directly supports popular and contemporary semantic segmentation frameworks, e.g. PSPNet, DeepLabV3, PSANet, DeepLabV3+, etc.
-
High efficiency
The training speed is faster than or comparable to other codebases.
License
This project is released under the Apache 2.0 license.
Changelog
v0.14.1 was released in 06/16/2021. Please refer to changelog.md for details and release history.
Benchmark and model zoo
Results and models are available in the model zoo.
Supported backbones:
- ResNet (CVPR'2016)
- ResNeXt (CVPR'2017)
- HRNet (CVPR'2019)
- ResNeSt (ArXiv'2020)
- MobileNetV2 (CVPR'2018)
- MobileNetV3 (ICCV'2019)
Supported methods:
- FCN (CVPR'2015/TPAMI'2017)
- UNet (MICCAI'2016/Nat. Methods'2019)
- PSPNet (CVPR'2017)
- DeepLabV3 (ArXiv'2017)
- Mixed Precision (FP16) Training (ArXiv'2017)
- PSANet (ECCV'2018)
- DeepLabV3+ (CVPR'2018)
- UPerNet (ECCV'2018)
- NonLocal Net (CVPR'2018)
- EncNet (CVPR'2018)
- Semantic FPN (CVPR'2019)
- DANet (CVPR'2019)
- APCNet (CVPR'2019)
- EMANet (ICCV'2019)
- CCNet (ICCV'2019)
- DMNet (ICCV'2019)
- ANN (ICCV'2019)
- GCNet (ICCVW'2019/TPAMI'2020)
- Fast-SCNN (ArXiv'2019)
- OCRNet (ECCV'2020)
- DNLNet (ECCV'2020)
- PointRend (CVPR'2020)
- CGNet (TIP'2020)
Installation
Please refer to get_started.md for installation and dataset_prepare.md for dataset preparation.
Get Started
Please see train.md and inference.md for the basic usage of MMSegmentation. There are also tutorials for customizing dataset, designing data pipeline, customizing modules, and customizing runtime. We also provide many training tricks.
A Colab tutorial is also provided. You may preview the notebook here or directly run on Colab.
Citation
If you find this project useful in your research, please consider cite:
@misc{mmseg2020,
title={{MMSegmentation}: OpenMMLab Semantic Segmentation Toolbox and Benchmark},
author={MMSegmentation Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmsegmentation}},
year={2020}
}
Contributing
We appreciate all contributions to improve MMSegmentation. Please refer to CONTRIBUTING.md for the contributing guideline.
Acknowledgement
MMSegmentation is an open source project that welcome any contribution and feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible as well as standardized toolkit to reimplement existing methods and develop their own new semantic segmentation methods.
Projects in OpenMMLab
- MMCV: OpenMMLab foundational library for computer vision.
- MMClassification: OpenMMLab image classification toolbox and benchmark.
- MMDetection: OpenMMLab detection toolbox and benchmark.
- MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
- MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
- MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
- MMTracking: OpenMMLab video perception toolbox and benchmark.
- MMPose: OpenMMLab pose estimation toolbox and benchmark.
- MMEditing: OpenMMLab image and video editing toolbox.
- MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding.
- MMGeneration: A powerful toolkit for generative models.