mmsegmentation/demo/image_demo.py

51 lines
1.5 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from argparse import ArgumentParser
from mmengine.utils import revert_sync_batchnorm
from mmseg.apis import inference_model, init_model, show_result_pyplot
from mmseg.utils import register_all_modules
def main():
parser = ArgumentParser()
parser.add_argument('img', help='Image file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--save-dir',
default=None,
help='Save file dir for all storage backends.')
parser.add_argument(
'--opacity',
type=float,
default=0.5,
help='Opacity of painted segmentation map. In (0, 1] range.')
parser.add_argument(
'--title', default='result', help='The image identifier.')
args = parser.parse_args()
register_all_modules()
# build the model from a config file and a checkpoint file
model = init_model(args.config, args.checkpoint, device=args.device)
if args.device == 'cpu':
model = revert_sync_batchnorm(model)
# test a single image
result = inference_model(model, args.img)
# show the results
show_result_pyplot(
model,
args.img, [result],
title=args.title,
opacity=args.opacity,
draw_gt=False,
show=False if args.save_dir is not None else True,
save_dir=args.save_dir)
if __name__ == '__main__':
main()