OpenMMLab Semantic Segmentation Toolbox and Benchmark.
 
 
 
Go to file
rstrudel ee47c41740 [Feature] Support Segmenter (#955)
* segmenter: add model

* update

* readme: update

* config: update

* segmenter: update readme

* segmenter: update

* segmenter: update

* segmenter: update

* configs: set checkpoint path to pretrain folder

* segmenter: modify vit-s/lin, remove data config

* rreadme: update

* configs: transfer from _base_ to segmenter

* configs: add 8x1 suffix

* configs: remove redundant lines

* configs: cleanup

* first attempt

* swipe CI error

* Update mmseg/models/decode_heads/__init__.py

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>

* segmenter_linear: use fcn backbone

* segmenter_mask: update

* models: add segmenter vit

* decoders: yapf+remove unused imports

* apply precommit

* segmenter/linear_head: fix

* segmenter/linear_header: fix

* segmenter: fix mask transformer

* fix error

* segmenter/mask_head: use trunc_normal init

* refactor segmenter head

* Fetch upstream (#1)

* [Feature] Change options to cfg-option (#1129)

* [Feature] Change option to cfg-option

* add expire date and fix the docs

* modify docstring

* [Fix] Add <!-- [ABSTRACT] --> in metafile #1127

* [Fix] Fix correct num_classes of HRNet in LoveDA dataset #1136

* Bump to v0.20.1 (#1138)

* bump version 0.20.1

* bump version 0.20.1

* [Fix] revise --option to --options #1140

Co-authored-by: Rockey <41846794+RockeyCoss@users.noreply.github.com>
Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>

* decode_head: switch from linear to fcn

* fix init list formatting

* configs: remove variants, keep only vit-s on ade

* align inference metric of vit-s-mask

* configs: add vit t/b/l

* Update mmseg/models/decode_heads/segmenter_mask_head.py

Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>

* Update mmseg/models/decode_heads/segmenter_mask_head.py

Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>

* Update mmseg/models/decode_heads/segmenter_mask_head.py

Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>

* Update mmseg/models/decode_heads/segmenter_mask_head.py

Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>

* Update mmseg/models/decode_heads/segmenter_mask_head.py

Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>

* model_converters: use torch instead of einops

* setup: remove einops

* segmenter_mask: fix missing imports

* add necessary imported init funtion

* segmenter/seg-l: set resolution to 640

* segmenter/seg-l: fix test size

* fix vitjax2mmseg

* add README and unittest

* fix unittest

* add docstring

* refactor config and add pretrained link

* fix typo

* add paper name in readme

* change segmenter config names

* fix typo in readme

* fix typos in readme

* fix segmenter typo

* fix segmenter typo

* delete redundant comma in config files

* delete redundant comma in config files

* fix convert script

* update lateset master version

Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>
Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
Co-authored-by: Rockey <41846794+RockeyCoss@users.noreply.github.com>
Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>
2022-01-26 13:50:51 +08:00
.circleci [Enhancement] CircleCI Setup (#1086) 2021-11-30 00:25:35 -08:00
.dev [Doc] Update `README.md` in configs according to latest standard. (#1233) 2022-01-25 20:45:39 +08:00
.github [Docs] Refactor the structure of documentation (#1128) 2021-12-16 18:56:45 +08:00
configs [Feature] Support Segmenter (#955) 2022-01-26 13:50:51 +08:00
demo [Docs] Refactor the structure of documentation (#1128) 2021-12-16 18:56:45 +08:00
docker Bump v0.20.0 (#1124) 2021-12-11 01:43:29 +08:00
docs [Feature] Support Segmenter (#955) 2022-01-26 13:50:51 +08:00
mmseg [Feature] Support Segmenter (#955) 2022-01-26 13:50:51 +08:00
requirements [Docs] Improve docs style (#879) 2021-09-16 08:23:50 -07:00
resources Add mmseg2torchserve tool (#552) 2021-07-05 21:11:47 +08:00
tests [Feature] Support Segmenter (#955) 2022-01-26 13:50:51 +08:00
tools [Feature] Support Segmenter (#955) 2022-01-26 13:50:51 +08:00
.gitignore [Docs] Refactor the structure of documentation (#1128) 2021-12-16 18:56:45 +08:00
.pre-commit-config.yaml [Enhancement] CircleCI Setup (#1086) 2021-11-30 00:25:35 -08:00
.readthedocs.yml add more format for readthedocs (#742) 2021-07-31 17:05:05 +08:00
CITATION.cff Add MMSeg citation (#825) 2021-09-01 18:38:58 -07:00
LICENSE
MANIFEST.in [Feature] support mim (#717) 2021-07-27 15:43:32 +08:00
README.md [Feature] Support Segmenter (#955) 2022-01-26 13:50:51 +08:00
README_zh-CN.md [Feature] Support Segmenter (#955) 2022-01-26 13:50:51 +08:00
model-index.yml [Feature] Support Segmenter (#955) 2022-01-26 13:50:51 +08:00
pytest.ini
requirements.txt Add pypi deployment (#11) 2020-07-13 20:54:32 +08:00
setup.cfg [Enhancement] Add codespell pre-commit hook and fix typos (#920) 2021-10-13 06:21:17 -07:00
setup.py remove pytest runner and update package info (#1201) 2022-01-13 10:37:48 +08:00

README.md

 
OpenMMLab website HOT      OpenMMLab platform TRY IT OUT
 

PyPI - Python Version PyPI docs badge codecov license issue resolution open issues

Documentation: https://mmsegmentation.readthedocs.io/

English | 简体中文

Introduction

MMSegmentation is an open source semantic segmentation toolbox based on PyTorch. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.5+.

demo image

Major features

  • Unified Benchmark

    We provide a unified benchmark toolbox for various semantic segmentation methods.

  • Modular Design

    We decompose the semantic segmentation framework into different components and one can easily construct a customized semantic segmentation framework by combining different modules.

  • Support of multiple methods out of box

    The toolbox directly supports popular and contemporary semantic segmentation frameworks, e.g. PSPNet, DeepLabV3, PSANet, DeepLabV3+, etc.

  • High efficiency

    The training speed is faster than or comparable to other codebases.

License

This project is released under the Apache 2.0 license.

Changelog

v0.20.2 was released in 12/15/2021. Please refer to changelog.md for details and release history.

Benchmark and model zoo

Results and models are available in the model zoo.

Supported backbones:

Supported methods:

Supported datasets:

Installation

Please refer to get_started.md for installation and dataset_prepare.md for dataset preparation.

Get Started

Please see train.md and inference.md for the basic usage of MMSegmentation. There are also tutorials for customizing dataset, designing data pipeline, customizing modules, and customizing runtime. We also provide many training tricks for better training and useful tools for deployment.

A Colab tutorial is also provided. You may preview the notebook here or directly run on Colab.

Citation

If you find this project useful in your research, please consider cite:

@misc{mmseg2020,
    title={{MMSegmentation}: OpenMMLab Semantic Segmentation Toolbox and Benchmark},
    author={MMSegmentation Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmsegmentation}},
    year={2020}
}

Contributing

We appreciate all contributions to improve MMSegmentation. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMSegmentation is an open source project that welcome any contribution and feedback. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible as well as standardized toolkit to reimplement existing methods and develop their own new semantic segmentation methods.

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding.
  • MMGeneration: A powerful toolkit for generative models.
  • MIM: MIM Installs OpenMMLab Packages.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMFewShot: OpenMMLab few shot learning toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab Model Compression Toolbox and Benchmark.
  • MMDeploy: OpenMMLab Model Deployment Framework.