324 lines
15 KiB
Markdown
324 lines
15 KiB
Markdown
## Changelog
|
|
|
|
### V0.16 (08/04/2021)
|
|
|
|
**Highlights**
|
|
|
|
- Support PyTorch 1.9
|
|
- Support SegFormer backbone MiT
|
|
- Support md2yml pre-commit hook
|
|
- Support frozen stage for HRNet
|
|
|
|
**New Features**
|
|
|
|
- Support SegFormer backbone MiT ([#594](https://github.com/open-mmlab/mmsegmentation/pull/594))
|
|
- Support md2yml pre-commit hook ([#732](https://github.com/open-mmlab/mmsegmentation/pull/732))
|
|
- Support mim ([#717](https://github.com/open-mmlab/mmsegmentation/pull/717))
|
|
- Add mmseg2torchserve tool ([#552](https://github.com/open-mmlab/mmsegmentation/pull/552))
|
|
|
|
**Improvements**
|
|
|
|
- Support hrnet frozen stage ([#743](https://github.com/open-mmlab/mmsegmentation/pull/743))
|
|
- Add template of reimplementation questions ([#741](https://github.com/open-mmlab/mmsegmentation/pull/741))
|
|
- Output pdf and epub formats for readthedocs ([#742](https://github.com/open-mmlab/mmsegmentation/pull/742))
|
|
- Refine the docstring of ResNet ([#723](https://github.com/open-mmlab/mmsegmentation/pull/723))
|
|
- Replace interpolate with resize ([#731](https://github.com/open-mmlab/mmsegmentation/pull/731))
|
|
- Update resource limit ([#700](https://github.com/open-mmlab/mmsegmentation/pull/700))
|
|
- Update config.md ([#678](https://github.com/open-mmlab/mmsegmentation/pull/678))
|
|
|
|
**Bug Fixes**
|
|
|
|
- Fix ATTENTION registry ([#729](https://github.com/open-mmlab/mmsegmentation/pull/729))
|
|
- Fix analyze log script ([#716](https://github.com/open-mmlab/mmsegmentation/pull/716))
|
|
- Fix doc api display ([#725](https://github.com/open-mmlab/mmsegmentation/pull/725))
|
|
- Fix patch_embed and pos_embed mismatch error ([#685](https://github.com/open-mmlab/mmsegmentation/pull/685))
|
|
- Fix efficient test for multi-node ([#707](https://github.com/open-mmlab/mmsegmentation/pull/707))
|
|
- Fix init_cfg in resnet backbone ([#697](https://github.com/open-mmlab/mmsegmentation/pull/697))
|
|
- Fix efficient test bug ([#702](https://github.com/open-mmlab/mmsegmentation/pull/702))
|
|
- Fix url error in config docs ([#680](https://github.com/open-mmlab/mmsegmentation/pull/680))
|
|
- Fix mmcv installation ([#676](https://github.com/open-mmlab/mmsegmentation/pull/676))
|
|
- Fix torch version ([#670](https://github.com/open-mmlab/mmsegmentation/pull/670))
|
|
|
|
**Contributors**
|
|
|
|
@sshuair @xiexinch @Junjun2016 @mmeendez8 @xvjiarui @sennnnn @puhsu @BIGWangYuDong @keke1u @daavoo
|
|
|
|
### V0.15 (07/04/2021)
|
|
|
|
**Highlights**
|
|
|
|
- Support ViT, SETR, and Swin-Transformer
|
|
- Add Chinese documentation
|
|
- Unified parameter initialization
|
|
|
|
**Bug Fixes**
|
|
|
|
- Fix typo and links ([#608](https://github.com/open-mmlab/mmsegmentation/pull/608))
|
|
- Fix Dockerfile ([#607](https://github.com/open-mmlab/mmsegmentation/pull/607))
|
|
- Fix ViT init ([#609](https://github.com/open-mmlab/mmsegmentation/pull/609))
|
|
- Fix mmcv version compatible table ([#658](https://github.com/open-mmlab/mmsegmentation/pull/658))
|
|
- Fix model links of DMNEt ([#660](https://github.com/open-mmlab/mmsegmentation/pull/660))
|
|
|
|
**New Features**
|
|
|
|
- Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538))
|
|
- Support SETR ([#531](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/635))
|
|
- Add config and models for ViT backbone with UperHead ([#520](https://github.com/open-mmlab/mmsegmentation/pull/531), [#635](https://github.com/open-mmlab/mmsegmentation/pull/520))
|
|
- Support Swin-Transformer ([#511](https://github.com/open-mmlab/mmsegmentation/pull/511))
|
|
- Add higher accuracy FastSCNN ([#606](https://github.com/open-mmlab/mmsegmentation/pull/606))
|
|
- Add Chinese documentation ([#666](https://github.com/open-mmlab/mmsegmentation/pull/666))
|
|
|
|
**Improvements**
|
|
|
|
- Unified parameter initialization ([#567](https://github.com/open-mmlab/mmsegmentation/pull/567))
|
|
- Separate CUDA and CPU in github action CI ([#602](https://github.com/open-mmlab/mmsegmentation/pull/602))
|
|
- Support persistent dataloader worker ([#646](https://github.com/open-mmlab/mmsegmentation/pull/646))
|
|
- Update meta file fields ([#661](https://github.com/open-mmlab/mmsegmentation/pull/661), [#664](https://github.com/open-mmlab/mmsegmentation/pull/664))
|
|
|
|
### V0.14 (06/02/2021)
|
|
|
|
**Highlights**
|
|
|
|
- Support ONNX to TensorRT
|
|
- Support MIM
|
|
|
|
**Bug Fixes**
|
|
|
|
- Fix ONNX to TensorRT verify ([#547](https://github.com/open-mmlab/mmsegmentation/pull/547))
|
|
- Fix save best for EvalHook ([#575](https://github.com/open-mmlab/mmsegmentation/pull/575))
|
|
|
|
**New Features**
|
|
|
|
- Support loading DeiT weights ([#538](https://github.com/open-mmlab/mmsegmentation/pull/538))
|
|
- Support ONNX to TensorRT ([#542](https://github.com/open-mmlab/mmsegmentation/pull/542))
|
|
- Support output results for ADE20k ([#544](https://github.com/open-mmlab/mmsegmentation/pull/544))
|
|
- Support MIM ([#549](https://github.com/open-mmlab/mmsegmentation/pull/549))
|
|
|
|
**Improvements**
|
|
|
|
- Add option for ViT output shape ([#530](https://github.com/open-mmlab/mmsegmentation/pull/530))
|
|
- Infer batch size using len(result) ([#532](https://github.com/open-mmlab/mmsegmentation/pull/532))
|
|
- Add compatible table between MMSeg and MMCV ([#558](https://github.com/open-mmlab/mmsegmentation/pull/558))
|
|
|
|
### V0.13 (05/05/2021)
|
|
|
|
**Highlights**
|
|
|
|
- Support Pascal Context Class-59 dataset.
|
|
- Support Visual Transformer Backbone.
|
|
- Support mFscore metric.
|
|
|
|
**Bug Fixes**
|
|
|
|
- Fixed Colaboratory tutorial ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451))
|
|
- Fixed mIoU calculation range ([#471](https://github.com/open-mmlab/mmsegmentation/pull/471))
|
|
- Fixed sem_fpn, unet README.md ([#492](https://github.com/open-mmlab/mmsegmentation/pull/492))
|
|
- Fixed `num_classes` in FCN for Pascal Context 60-class dataset ([#488](https://github.com/open-mmlab/mmsegmentation/pull/488))
|
|
- Fixed FP16 inference ([#497](https://github.com/open-mmlab/mmsegmentation/pull/497))
|
|
|
|
**New Features**
|
|
|
|
- Support dynamic export and visualize to pytorch2onnx ([#463](https://github.com/open-mmlab/mmsegmentation/pull/463))
|
|
- Support export to torchscript ([#469](https://github.com/open-mmlab/mmsegmentation/pull/469), [#499](https://github.com/open-mmlab/mmsegmentation/pull/499))
|
|
- Support Pascal Context Class-59 dataset ([#459](https://github.com/open-mmlab/mmsegmentation/pull/459))
|
|
- Support Visual Transformer backbone ([#465](https://github.com/open-mmlab/mmsegmentation/pull/465))
|
|
- Support UpSample Neck ([#512](https://github.com/open-mmlab/mmsegmentation/pull/512))
|
|
- Support mFscore metric ([#509](https://github.com/open-mmlab/mmsegmentation/pull/509))
|
|
|
|
**Improvements**
|
|
|
|
- Add more CI for PyTorch ([#460](https://github.com/open-mmlab/mmsegmentation/pull/460))
|
|
- Add print model graph args for tools/print_config.py ([#451](https://github.com/open-mmlab/mmsegmentation/pull/451))
|
|
- Add cfg links in modelzoo README.md ([#468](https://github.com/open-mmlab/mmsegmentation/pull/469))
|
|
- Add BaseSegmentor import to segmentors/__init__.py ([#495](https://github.com/open-mmlab/mmsegmentation/pull/495))
|
|
- Add MMOCR, MMGeneration links ([#501](https://github.com/open-mmlab/mmsegmentation/pull/501), [#506](https://github.com/open-mmlab/mmsegmentation/pull/506))
|
|
- Add Chinese QR code ([#506](https://github.com/open-mmlab/mmsegmentation/pull/506))
|
|
- Use MMCV MODEL_REGISTRY ([#515](https://github.com/open-mmlab/mmsegmentation/pull/515))
|
|
- Add ONNX testing tools ([#498](https://github.com/open-mmlab/mmsegmentation/pull/498))
|
|
- Replace data_dict calling 'img' key to support MMDet3D ([#514](https://github.com/open-mmlab/mmsegmentation/pull/514))
|
|
- Support reading class_weight from file in loss function ([#513](https://github.com/open-mmlab/mmsegmentation/pull/513))
|
|
- Make tags as comment ([#505](https://github.com/open-mmlab/mmsegmentation/pull/505))
|
|
- Use MMCV EvalHook ([#438](https://github.com/open-mmlab/mmsegmentation/pull/438))
|
|
|
|
### V0.12 (04/03/2021)
|
|
|
|
**Highlights**
|
|
|
|
- Support FCN-Dilate 6 model.
|
|
- Support Dice Loss.
|
|
|
|
**Bug Fixes**
|
|
|
|
- Fixed PhotoMetricDistortion Doc ([#388](https://github.com/open-mmlab/mmsegmentation/pull/388))
|
|
- Fixed install scripts ([#399](https://github.com/open-mmlab/mmsegmentation/pull/399))
|
|
- Fixed Dice Loss multi-class ([#417](https://github.com/open-mmlab/mmsegmentation/pull/417))
|
|
|
|
**New Features**
|
|
|
|
- Support Dice Loss ([#396](https://github.com/open-mmlab/mmsegmentation/pull/396))
|
|
- Add plot logs tool ([#426](https://github.com/open-mmlab/mmsegmentation/pull/426))
|
|
- Add opacity option to show_result ([#425](https://github.com/open-mmlab/mmsegmentation/pull/425))
|
|
- Speed up mIoU metric ([#430](https://github.com/open-mmlab/mmsegmentation/pull/430))
|
|
|
|
**Improvements**
|
|
|
|
- Refactor unittest file structure ([#440](https://github.com/open-mmlab/mmsegmentation/pull/440))
|
|
- Fix typos in the repo ([#449](https://github.com/open-mmlab/mmsegmentation/pull/449))
|
|
- Include class-level metrics in the log ([#445](https://github.com/open-mmlab/mmsegmentation/pull/445))
|
|
|
|
### V0.11 (02/02/2021)
|
|
|
|
**Highlights**
|
|
|
|
- Support memory efficient test, add more UNet models.
|
|
|
|
**Bug Fixes**
|
|
|
|
- Fixed TTA resize scale ([#334](https://github.com/open-mmlab/mmsegmentation/pull/334))
|
|
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307))
|
|
- Fixed ADE20k test ([#359](https://github.com/open-mmlab/mmsegmentation/pull/359))
|
|
|
|
**New Features**
|
|
|
|
- Support memory efficient test ([#330](https://github.com/open-mmlab/mmsegmentation/pull/330))
|
|
- Add more UNet benchmarks ([#324](https://github.com/open-mmlab/mmsegmentation/pull/324))
|
|
- Support Lovasz Loss ([#351](https://github.com/open-mmlab/mmsegmentation/pull/351))
|
|
|
|
**Improvements**
|
|
|
|
- Move train_cfg/test_cfg inside model ([#341](https://github.com/open-mmlab/mmsegmentation/pull/341))
|
|
|
|
### V0.10 (01/01/2021)
|
|
|
|
**Highlights**
|
|
|
|
- Support MobileNetV3, DMNet, APCNet. Add models of ResNet18V1b, ResNet18V1c, ResNet50V1b.
|
|
|
|
**Bug Fixes**
|
|
|
|
- Fixed CPU TTA ([#276](https://github.com/open-mmlab/mmsegmentation/pull/276))
|
|
- Fixed CI for pip 20.3 ([#307](https://github.com/open-mmlab/mmsegmentation/pull/307))
|
|
|
|
**New Features**
|
|
|
|
- Add ResNet18V1b, ResNet18V1c, ResNet50V1b, ResNet101V1b models ([#316](https://github.com/open-mmlab/mmsegmentation/pull/316))
|
|
- Support MobileNetV3 ([#268](https://github.com/open-mmlab/mmsegmentation/pull/268))
|
|
- Add 4 retinal vessel segmentation benchmark ([#315](https://github.com/open-mmlab/mmsegmentation/pull/315))
|
|
- Support DMNet ([#313](https://github.com/open-mmlab/mmsegmentation/pull/313))
|
|
- Support APCNet ([#299](https://github.com/open-mmlab/mmsegmentation/pull/299))
|
|
|
|
**Improvements**
|
|
|
|
- Refactor Documentation page ([#311](https://github.com/open-mmlab/mmsegmentation/pull/311))
|
|
- Support resize data augmentation according to original image size ([#291](https://github.com/open-mmlab/mmsegmentation/pull/291))
|
|
|
|
### V0.9 (30/11/2020)
|
|
|
|
**Highlights**
|
|
|
|
- Support 4 medical dataset, UNet and CGNet.
|
|
|
|
**New Features**
|
|
|
|
- Support RandomRotate transform ([#215](https://github.com/open-mmlab/mmsegmentation/pull/215), [#260](https://github.com/open-mmlab/mmsegmentation/pull/260))
|
|
- Support RGB2Gray transform ([#227](https://github.com/open-mmlab/mmsegmentation/pull/227))
|
|
- Support Rerange transform ([#228](https://github.com/open-mmlab/mmsegmentation/pull/228))
|
|
- Support ignore_index for BCE loss ([#210](https://github.com/open-mmlab/mmsegmentation/pull/210))
|
|
- Add modelzoo statistics ([#263](https://github.com/open-mmlab/mmsegmentation/pull/263))
|
|
- Support Dice evaluation metric ([#225](https://github.com/open-mmlab/mmsegmentation/pull/225))
|
|
- Support Adjust Gamma transform ([#232](https://github.com/open-mmlab/mmsegmentation/pull/232))
|
|
- Support CLAHE transform ([#229](https://github.com/open-mmlab/mmsegmentation/pull/229))
|
|
|
|
**Bug Fixes**
|
|
|
|
- Fixed detail API link ([#267](https://github.com/open-mmlab/mmsegmentation/pull/267))
|
|
|
|
### V0.8 (03/11/2020)
|
|
|
|
**Highlights**
|
|
|
|
- Support 4 medical dataset, UNet and CGNet.
|
|
|
|
**New Features**
|
|
|
|
- Support customize runner ([#118](https://github.com/open-mmlab/mmsegmentation/pull/118))
|
|
- Support UNet ([#161](https://github.com/open-mmlab/mmsegmentation/pull/162))
|
|
- Support CHASE_DB1, DRIVE, STARE, HRD ([#203](https://github.com/open-mmlab/mmsegmentation/pull/203))
|
|
- Support CGNet ([#223](https://github.com/open-mmlab/mmsegmentation/pull/223))
|
|
|
|
### V0.7 (07/10/2020)
|
|
|
|
**Highlights**
|
|
|
|
- Support Pascal Context dataset and customizing class dataset.
|
|
|
|
**Bug Fixes**
|
|
|
|
- Fixed CPU inference ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153))
|
|
|
|
**New Features**
|
|
|
|
- Add DeepLab OS16 models ([#154](https://github.com/open-mmlab/mmsegmentation/pull/154))
|
|
- Support Pascal Context dataset ([#133](https://github.com/open-mmlab/mmsegmentation/pull/133))
|
|
- Support customizing dataset classes ([#71](https://github.com/open-mmlab/mmsegmentation/pull/71))
|
|
- Support customizing dataset palette ([#157](https://github.com/open-mmlab/mmsegmentation/pull/157))
|
|
|
|
**Improvements**
|
|
|
|
- Support 4D tensor output in ONNX ([#150](https://github.com/open-mmlab/mmsegmentation/pull/150))
|
|
- Remove redundancies in ONNX export ([#160](https://github.com/open-mmlab/mmsegmentation/pull/160))
|
|
- Migrate to MMCV DepthwiseSeparableConv ([#158](https://github.com/open-mmlab/mmsegmentation/pull/158))
|
|
- Migrate to MMCV collect_env ([#137](https://github.com/open-mmlab/mmsegmentation/pull/137))
|
|
- Use img_prefix and seg_prefix for loading ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153))
|
|
|
|
### V0.6 (10/09/2020)
|
|
|
|
**Highlights**
|
|
|
|
- Support new methods i.e. MobileNetV2, EMANet, DNL, PointRend, Semantic FPN, Fast-SCNN, ResNeSt.
|
|
|
|
**Bug Fixes**
|
|
|
|
- Fixed sliding inference ONNX export ([#90](https://github.com/open-mmlab/mmsegmentation/pull/90))
|
|
|
|
**New Features**
|
|
|
|
- Support MobileNet v2 ([#86](https://github.com/open-mmlab/mmsegmentation/pull/86))
|
|
- Support EMANet ([#34](https://github.com/open-mmlab/mmsegmentation/pull/34))
|
|
- Support DNL ([#37](https://github.com/open-mmlab/mmsegmentation/pull/37))
|
|
- Support PointRend ([#109](https://github.com/open-mmlab/mmsegmentation/pull/109))
|
|
- Support Semantic FPN ([#94](https://github.com/open-mmlab/mmsegmentation/pull/94))
|
|
- Support Fast-SCNN ([#58](https://github.com/open-mmlab/mmsegmentation/pull/58))
|
|
- Support ResNeSt backbone ([#47](https://github.com/open-mmlab/mmsegmentation/pull/47))
|
|
- Support ONNX export (experimental) ([#12](https://github.com/open-mmlab/mmsegmentation/pull/12))
|
|
|
|
**Improvements**
|
|
|
|
- Support Upsample in ONNX ([#100](https://github.com/open-mmlab/mmsegmentation/pull/100))
|
|
- Support Windows install (experimental) ([#75](https://github.com/open-mmlab/mmsegmentation/pull/75))
|
|
- Add more OCRNet results ([#20](https://github.com/open-mmlab/mmsegmentation/pull/20))
|
|
- Add PyTorch 1.6 CI ([#64](https://github.com/open-mmlab/mmsegmentation/pull/64))
|
|
- Get version and githash automatically ([#55](https://github.com/open-mmlab/mmsegmentation/pull/55))
|
|
|
|
### v0.5.1 (11/08/2020)
|
|
|
|
**Highlights**
|
|
|
|
- Support FP16 and more generalized OHEM
|
|
|
|
**Bug Fixes**
|
|
|
|
- Fixed Pascal VOC conversion script (#19)
|
|
- Fixed OHEM weight assign bug (#54)
|
|
- Fixed palette type when palette is not given (#27)
|
|
|
|
**New Features**
|
|
|
|
- Support FP16 (#21)
|
|
- Generalized OHEM (#54)
|
|
|
|
**Improvements**
|
|
|
|
- Add load-from flag (#33)
|
|
- Fixed training tricks doc about different learning rates of model (#26)
|