1
0
mirror of https://github.com/open-mmlab/mmsegmentation.git synced 2025-06-03 22:03:48 +08:00
Miao Zheng 50546da85c
[Fix]Remove modules from mmcv.runner and mmcv.utils ()
* [WIP] mmcv-clean

* [WIP]Remove modules from mmcv.runner and mmcv.utils

* wip

* fix import mmengine

* remove ut

* loadcheckpoint in mae
2022-08-25 15:15:21 +08:00

75 lines
2.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from mmengine import Config, DictAction
from mmengine.utils import ProgressBar
from mmseg.datasets import DATASETS
from mmseg.registry import VISUALIZERS
from mmseg.utils import register_all_modules
def parse_args():
parser = argparse.ArgumentParser(description='Browse a dataset')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--output-dir',
default=None,
type=str,
help='If there is no display interface, you can save it')
parser.add_argument('--not-show', default=False, action='store_true')
parser.add_argument(
'--show-interval',
type=float,
default=2,
help='the interval of show (s)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# register all modules in mmseg into the registries
register_all_modules()
dataset = DATASETS.build(cfg.train_dataloader.dataset)
visualizer = VISUALIZERS.build(cfg.visualizer)
visualizer.dataset_meta = dataset.METAINFO
progress_bar = ProgressBar(len(dataset))
for item in dataset:
img = item['inputs'].permute(1, 2, 0).numpy()
data_sample = item['data_sample'].numpy()
img_path = osp.basename(item['data_sample'].img_path)
img = img[..., [2, 1, 0]] # bgr to rgb
visualizer.add_datasample(
osp.basename(img_path),
img,
data_sample,
show=not args.not_show,
wait_time=args.show_interval)
progress_bar.update()
if __name__ == '__main__':
main()