185 lines
5.8 KiB
YAML
185 lines
5.8 KiB
YAML
Collections:
|
|
- Name: mobilenet_v2
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20k
|
|
Paper:
|
|
URL: https://arxiv.org/abs/1801.04381
|
|
Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks'
|
|
README: configs/mobilenet_v2/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/mobilenet_v2.py#L14
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: https://github.com/tensorflow/models/tree/master/research/deeplab
|
|
Models:
|
|
- Name: fcn_m-v2-d8_512x1024_80k_cityscapes
|
|
In Collection: mobilenet_v2
|
|
Metadata:
|
|
backbone: M-V2-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 70.42
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 3.4
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 61.54
|
|
Config: configs/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x1024_80k_cityscapes/fcn_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-d24c28c1.pth
|
|
- Name: pspnet_m-v2-d8_512x1024_80k_cityscapes
|
|
In Collection: mobilenet_v2
|
|
Metadata:
|
|
backbone: M-V2-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 89.29
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 3.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 70.23
|
|
Config: configs/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes/pspnet_m-v2-d8_512x1024_80k_cityscapes_20200825_124817-19e81d51.pth
|
|
- Name: deeplabv3_m-v2-d8_512x1024_80k_cityscapes
|
|
In Collection: mobilenet_v2
|
|
Metadata:
|
|
backbone: M-V2-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 119.05
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 3.9
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 73.84
|
|
Config: configs/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x1024_80k_cityscapes/deeplabv3_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-bef03590.pth
|
|
- Name: deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes
|
|
In Collection: mobilenet_v2
|
|
Metadata:
|
|
backbone: M-V2-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 119.05
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
memory (GB): 5.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.2
|
|
Config: configs/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes/deeplabv3plus_m-v2-d8_512x1024_80k_cityscapes_20200825_124836-d256dd4b.pth
|
|
- Name: fcn_m-v2-d8_512x512_160k_ade20k
|
|
In Collection: mobilenet_v2
|
|
Metadata:
|
|
backbone: M-V2-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 15.53
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 6.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20k
|
|
Metrics:
|
|
mIoU: 19.71
|
|
Config: configs/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/fcn_m-v2-d8_512x512_160k_ade20k/fcn_m-v2-d8_512x512_160k_ade20k_20200825_214953-c40e1095.pth
|
|
- Name: pspnet_m-v2-d8_512x512_160k_ade20k
|
|
In Collection: mobilenet_v2
|
|
Metadata:
|
|
backbone: M-V2-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 17.33
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 6.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20k
|
|
Metrics:
|
|
mIoU: 29.68
|
|
Config: configs/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/pspnet_m-v2-d8_512x512_160k_ade20k/pspnet_m-v2-d8_512x512_160k_ade20k_20200825_214953-f5942f7a.pth
|
|
- Name: deeplabv3_m-v2-d8_512x512_160k_ade20k
|
|
In Collection: mobilenet_v2
|
|
Metadata:
|
|
backbone: M-V2-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 25.06
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 6.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20k
|
|
Metrics:
|
|
mIoU: 34.08
|
|
Config: configs/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3_m-v2-d8_512x512_160k_ade20k/deeplabv3_m-v2-d8_512x512_160k_ade20k_20200825_223255-63986343.pth
|
|
- Name: deeplabv3plus_m-v2-d8_512x512_160k_ade20k
|
|
In Collection: mobilenet_v2
|
|
Metadata:
|
|
backbone: M-V2-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 23.2
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
memory (GB): 8.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20k
|
|
Metrics:
|
|
mIoU: 34.02
|
|
Config: configs/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/mobilenet_v2/deeplabv3plus_m-v2-d8_512x512_160k_ade20k/deeplabv3plus_m-v2-d8_512x512_160k_ade20k_20200825_223255-465a01d4.pth
|