mmsegmentation/configs/pidnet/pidnet-l_2xb6-120k_1024x1024-cityscapes.py
谢昕辰 dd47cef801
[Feature] Support PIDNet (#2609)
## Motivation

Support SOTA real-time semantic segmentation method in [Paper with
code](https://paperswithcode.com/task/real-time-semantic-segmentation)

Paper: https://arxiv.org/pdf/2206.02066.pdf
Official repo: https://github.com/XuJiacong/PIDNet

## Current results

**Cityscapes**

|Model|Ref mIoU|mIoU (ours)|
|---|---|---|
|PIDNet-S|78.8|78.74|
|PIDNet-M|79.9|80.22|
|PIDNet-L|80.9|80.89|

## TODO

- [x] Support inference with official weights
- [x] Support training on Cityscapes
- [x] Update docstring
- [x] Add unit test
2023-03-15 14:55:30 +08:00

11 lines
434 B
Python

_base_ = './pidnet-s_2xb6-120k_1024x1024-cityscapes.py'
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/pidnet/pidnet-l_imagenet1k_20230306-67889109.pth' # noqa
model = dict(
backbone=dict(
channels=64,
ppm_channels=112,
num_stem_blocks=3,
num_branch_blocks=4,
init_cfg=dict(checkpoint=checkpoint_file)),
decode_head=dict(in_channels=256, channels=256))