mmsegmentation/mmseg/models/necks/multilevel_neck.py
谢昕辰 737544f1c5
add configs for vit backbone plus decode_heads (#520)
* add config

* add cityscapes config

* add default value to docstring

* fix lint

* add deit-s and deit-b

* add readme

* add eps at norm_cfg

* add drop_path_rate experiment

* add deit case at init_weight

* add upernet result

* update result and add upernet 160k config

* update upernet result and fix settings

* Update iters number

* update result and delete some configs

* fix import error

* fix drop_path_rate

* update result and restore config

* update benchmark result

* remove cityscapes exp

* remove neck

* neck exp

* add more configs

* fix init error

* fix ffn setting

* update result

* update results

* update result

* update results and fill table

* delete or rename configs

* fix link delimiter

* rename configs and fix link

* rename neck to mln
2021-07-01 23:00:39 +08:00

77 lines
2.6 KiB
Python

import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, xavier_init
from ..builder import NECKS
@NECKS.register_module()
class MultiLevelNeck(nn.Module):
"""MultiLevelNeck.
A neck structure connect vit backbone and decoder_heads.
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale).
scales (List[float]): Scale factors for each input feature map.
Default: [0.5, 1, 2, 4]
norm_cfg (dict): Config dict for normalization layer. Default: None.
act_cfg (dict): Config dict for activation layer in ConvModule.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
scales=[0.5, 1, 2, 4],
norm_cfg=None,
act_cfg=None):
super(MultiLevelNeck, self).__init__()
assert isinstance(in_channels, list)
self.in_channels = in_channels
self.out_channels = out_channels
self.scales = scales
self.num_outs = len(scales)
self.lateral_convs = nn.ModuleList()
self.convs = nn.ModuleList()
for in_channel in in_channels:
self.lateral_convs.append(
ConvModule(
in_channel,
out_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
for _ in range(self.num_outs):
self.convs.append(
ConvModule(
out_channels,
out_channels,
kernel_size=3,
padding=1,
stride=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
# default init_weights for conv(msra) and norm in ConvModule
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
xavier_init(m, distribution='uniform')
def forward(self, inputs):
assert len(inputs) == len(self.in_channels)
inputs = [
lateral_conv(inputs[i])
for i, lateral_conv in enumerate(self.lateral_convs)
]
# for len(inputs) not equal to self.num_outs
if len(inputs) == 1:
inputs = [inputs[0] for _ in range(self.num_outs)]
outs = []
for i in range(self.num_outs):
x_resize = F.interpolate(
inputs[i], scale_factor=self.scales[i], mode='bilinear')
outs.append(self.convs[i](x_resize))
return tuple(outs)