MengzhangLI 4003b8f421
[Feature] Support BiSeNetV2 (#804)
* BiSeNetV2 first commit

* BiSeNetV2 unittest

* remove pytest

* add pytest module

* fix ConvModule input name

* fix pytest error

* fix unittest

* refactor

* BiSeNetV2 Refactory

* fix docstrings and add some small changes

* use_sigmoid=False

* fix potential bugs about upsampling

* Use ConvModule instead

* Use ConvModule instead

* fix typos

* fix typos

* fix typos

* discard nn.conv2d

* discard nn.conv2d

* discard nn.conv2d

* delete **kwargs

* uploading markdown and model

* final commit

* BiSeNetV2 adding Unittest for its modules

* BiSeNetV2 adding Unittest for its modules

* BiSeNetV2 adding Unittest for its modules

* BiSeNetV2 adding Unittest for its modules

* BiSeNetV2 adding Unittest for its modules

* BiSeNetV2 adding Unittest for its modules

* BiSeNetV2 adding Unittest for its modules

* Fix README conflict

* Fix unittest problem

* Fix unittest problem

* BiSeNetV2

* Fixing fps

* Fixing typpos

* bisenetv2
2021-09-26 18:52:16 +08:00

81 lines
2.4 KiB
Python

# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained=None,
backbone=dict(
type='BiSeNetV2',
detail_channels=(64, 64, 128),
semantic_channels=(16, 32, 64, 128),
semantic_expansion_ratio=6,
bga_channels=128,
out_indices=(0, 1, 2, 3, 4),
init_cfg=None,
align_corners=False),
decode_head=dict(
type='FCNHead',
in_channels=128,
in_index=0,
channels=1024,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=[
dict(
type='FCNHead',
in_channels=16,
channels=16,
num_convs=2,
num_classes=19,
in_index=1,
norm_cfg=norm_cfg,
concat_input=False,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
dict(
type='FCNHead',
in_channels=32,
channels=64,
num_convs=2,
num_classes=19,
in_index=2,
norm_cfg=norm_cfg,
concat_input=False,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
dict(
type='FCNHead',
in_channels=64,
channels=256,
num_convs=2,
num_classes=19,
in_index=3,
norm_cfg=norm_cfg,
concat_input=False,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
dict(
type='FCNHead',
in_channels=128,
channels=1024,
num_convs=2,
num_classes=19,
in_index=4,
norm_cfg=norm_cfg,
concat_input=False,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
],
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))