105 lines
3.2 KiB
YAML
105 lines
3.2 KiB
YAML
Collections:
|
|
- Name: point_rend
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
Paper:
|
|
URL: https://arxiv.org/abs/1912.08193
|
|
Title: 'PointRend: Image Segmentation as Rendering'
|
|
README: configs/point_rend/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/point_head.py#L36
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend
|
|
Models:
|
|
- Name: pointrend_r50_512x1024_80k_cityscapes
|
|
In Collection: point_rend
|
|
Metadata:
|
|
backbone: R-50
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 117.92
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 3.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 76.47
|
|
mIoU(ms+flip): 78.13
|
|
Config: configs/point_rend/pointrend_r50_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x1024_80k_cityscapes/pointrend_r50_512x1024_80k_cityscapes_20200711_015821-bb1ff523.pth
|
|
- Name: pointrend_r101_512x1024_80k_cityscapes
|
|
In Collection: point_rend
|
|
Metadata:
|
|
backbone: R-101
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 142.86
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 4.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.3
|
|
mIoU(ms+flip): 79.97
|
|
Config: configs/point_rend/pointrend_r101_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x1024_80k_cityscapes/pointrend_r101_512x1024_80k_cityscapes_20200711_170850-d0ca84be.pth
|
|
- Name: pointrend_r50_512x512_160k_ade20k
|
|
In Collection: point_rend
|
|
Metadata:
|
|
backbone: R-50
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 57.77
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 5.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 37.64
|
|
mIoU(ms+flip): 39.17
|
|
Config: configs/point_rend/pointrend_r50_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r50_512x512_160k_ade20k/pointrend_r50_512x512_160k_ade20k_20200807_232644-ac3febf2.pth
|
|
- Name: pointrend_r101_512x512_160k_ade20k
|
|
In Collection: point_rend
|
|
Metadata:
|
|
backbone: R-101
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
inference time (ms/im):
|
|
- value: 64.52
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 40.02
|
|
mIoU(ms+flip): 41.6
|
|
Config: configs/point_rend/pointrend_r101_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/point_rend/pointrend_r101_512x512_160k_ade20k/pointrend_r101_512x512_160k_ade20k_20200808_030852-8834902a.pth
|