811 lines
26 KiB
YAML
811 lines
26 KiB
YAML
Collections:
|
|
- Name: pspnet
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
- Pascal VOC 2012 + Aug
|
|
- Pascal Context
|
|
- Pascal Context 59
|
|
- Dark Zurich and Nighttime Driving
|
|
- COCO-Stuff 10k
|
|
- COCO-Stuff 164k
|
|
- LoveDA
|
|
Paper:
|
|
URL: https://arxiv.org/abs/1612.01105
|
|
Title: Pyramid Scene Parsing Network
|
|
README: configs/pspnet/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: https://github.com/hszhao/PSPNet
|
|
Models:
|
|
- Name: pspnet_r50-d8_512x1024_40k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 245.7
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 6.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.85
|
|
mIoU(ms+flip): 79.18
|
|
Config: configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth
|
|
- Name: pspnet_r101-d8_512x1024_40k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 373.13
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 9.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.34
|
|
mIoU(ms+flip): 79.74
|
|
Config: configs/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth
|
|
- Name: pspnet_r50-d8_769x769_40k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 568.18
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 6.9
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.26
|
|
mIoU(ms+flip): 79.88
|
|
Config: configs/pspnet/pspnet_r50-d8_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725-86638686.pth
|
|
- Name: pspnet_r101-d8_769x769_40k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 869.57
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 10.9
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.08
|
|
mIoU(ms+flip): 80.28
|
|
Config: configs/pspnet/pspnet_r101-d8_769x769_40k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753-61c6f5be.pth
|
|
- Name: pspnet_r18-d8_512x1024_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-18-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 63.65
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 1.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 74.87
|
|
mIoU(ms+flip): 76.04
|
|
Config: configs/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth
|
|
- Name: pspnet_r50-d8_512x1024_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.55
|
|
mIoU(ms+flip): 79.79
|
|
Config: configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth
|
|
- Name: pspnet_r101-d8_512x1024_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.76
|
|
mIoU(ms+flip): 81.01
|
|
Config: configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth
|
|
- Name: pspnet_r101-d8_fp16_512x1024_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 114.03
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP16
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 5.34
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.46
|
|
Config: configs/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919-a0875e5c.pth
|
|
- Name: pspnet_r18-d8_769x769_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-18-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 161.29
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 1.9
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 75.9
|
|
mIoU(ms+flip): 77.86
|
|
Config: configs/pspnet/pspnet_r18-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth
|
|
- Name: pspnet_r50-d8_769x769_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.59
|
|
mIoU(ms+flip): 80.69
|
|
Config: configs/pspnet/pspnet_r50-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth
|
|
- Name: pspnet_r101-d8_769x769_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.77
|
|
mIoU(ms+flip): 81.06
|
|
Config: configs/pspnet/pspnet_r101-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth
|
|
- Name: pspnet_r18b-d8_512x1024_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-18b-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 61.43
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 1.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 74.23
|
|
mIoU(ms+flip): 75.79
|
|
Config: configs/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes_20201226_063116-26928a60.pth
|
|
- Name: pspnet_r50b-d8_512x1024_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50b-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 232.56
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 6.0
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.22
|
|
mIoU(ms+flip): 79.46
|
|
Config: configs/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes_20201225_094315-6344287a.pth
|
|
- Name: pspnet_r101b-d8_512x1024_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101b-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 362.32
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 9.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.69
|
|
mIoU(ms+flip): 80.79
|
|
Config: configs/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth
|
|
- Name: pspnet_r18b-d8_769x769_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-18b-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 156.01
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 1.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 74.92
|
|
mIoU(ms+flip): 76.9
|
|
Config: configs/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes_20201226_080942-bf98d186.pth
|
|
- Name: pspnet_r50b-d8_769x769_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50b-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 531.91
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 6.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.5
|
|
mIoU(ms+flip): 79.96
|
|
Config: configs/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes_20201225_094316-4c643cf6.pth
|
|
- Name: pspnet_r101b-d8_769x769_80k_cityscapes
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101b-D8
|
|
crop size: (769,769)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 854.7
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (769,769)
|
|
Training Memory (GB): 10.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.87
|
|
mIoU(ms+flip): 80.04
|
|
Config: configs/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes_20201226_171823-f0e7c293.pth
|
|
- Name: pspnet_r50-d8_512x512_80k_ade20k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 42.5
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 8.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 41.13
|
|
mIoU(ms+flip): 41.94
|
|
Config: configs/pspnet/pspnet_r50-d8_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128-15a8b914.pth
|
|
- Name: pspnet_r101-d8_512x512_80k_ade20k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 65.36
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 12.0
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.57
|
|
mIoU(ms+flip): 44.35
|
|
Config: configs/pspnet/pspnet_r101-d8_512x512_80k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423-b6e782f0.pth
|
|
- Name: pspnet_r50-d8_512x512_160k_ade20k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 42.48
|
|
mIoU(ms+flip): 43.44
|
|
Config: configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth
|
|
- Name: pspnet_r101-d8_512x512_160k_ade20k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 44.39
|
|
mIoU(ms+flip): 45.35
|
|
Config: configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth
|
|
- Name: pspnet_r50-d8_512x512_20k_voc12aug
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 42.39
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 76.78
|
|
mIoU(ms+flip): 77.61
|
|
Config: configs/pspnet/pspnet_r50-d8_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958-ed5dfbd9.pth
|
|
- Name: pspnet_r101-d8_512x512_20k_voc12aug
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 66.58
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 9.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 78.47
|
|
mIoU(ms+flip): 79.25
|
|
Config: configs/pspnet/pspnet_r101-d8_512x512_20k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003-4aef3c9a.pth
|
|
- Name: pspnet_r50-d8_512x512_40k_voc12aug
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.29
|
|
mIoU(ms+flip): 78.48
|
|
Config: configs/pspnet/pspnet_r50-d8_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222-ae9c1b8c.pth
|
|
- Name: pspnet_r101-d8_512x512_40k_voc12aug
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 78.52
|
|
mIoU(ms+flip): 79.57
|
|
Config: configs/pspnet/pspnet_r101-d8_512x512_40k_voc12aug.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222-bc933b18.pth
|
|
- Name: pspnet_r101-d8_480x480_40k_pascal_context
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 103.31
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (480,480)
|
|
Training Memory (GB): 8.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context
|
|
Metrics:
|
|
mIoU: 46.6
|
|
mIoU(ms+flip): 47.78
|
|
Config: configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context_20200911_211210-bf0f5d7c.pth
|
|
- Name: pspnet_r101-d8_480x480_80k_pascal_context
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context
|
|
Metrics:
|
|
mIoU: 46.03
|
|
mIoU(ms+flip): 47.15
|
|
Config: configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context_20200911_190530-c86d6233.pth
|
|
- Name: pspnet_r101-d8_480x480_40k_pascal_context_59
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context 59
|
|
Metrics:
|
|
mIoU: 52.02
|
|
mIoU(ms+flip): 53.54
|
|
Config: configs/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth
|
|
- Name: pspnet_r101-d8_480x480_80k_pascal_context_59
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (480,480)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal Context 59
|
|
Metrics:
|
|
mIoU: 52.47
|
|
mIoU(ms+flip): 53.99
|
|
Config: configs/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth
|
|
- Name: pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 48.78
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 9.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 10k
|
|
Metrics:
|
|
mIoU: 35.69
|
|
mIoU(ms+flip): 36.62
|
|
Config: configs/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258-b88df27f.pth
|
|
- Name: pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 90.09
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 13.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 10k
|
|
Metrics:
|
|
mIoU: 37.26
|
|
mIoU(ms+flip): 38.52
|
|
Config: configs/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135-76aae482.pth
|
|
- Name: pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 10k
|
|
Metrics:
|
|
mIoU: 36.33
|
|
mIoU(ms+flip): 37.24
|
|
Config: configs/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857-92e2902b.pth
|
|
- Name: pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 10k
|
|
Metrics:
|
|
mIoU: 37.76
|
|
mIoU(ms+flip): 38.86
|
|
Config: configs/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022-831aec95.pth
|
|
- Name: pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 48.78
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 9.6
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 38.8
|
|
mIoU(ms+flip): 39.19
|
|
Config: configs/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-0e41b2db.pth
|
|
- Name: pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 90.09
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 13.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 40.34
|
|
mIoU(ms+flip): 40.79
|
|
Config: configs/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-7eb41789.pth
|
|
- Name: pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 39.64
|
|
mIoU(ms+flip): 39.97
|
|
Config: configs/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-51276a57.pth
|
|
- Name: pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 41.28
|
|
mIoU(ms+flip): 41.66
|
|
Config: configs/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-4af9621b.pth
|
|
- Name: pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 320000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 40.53
|
|
mIoU(ms+flip): 40.75
|
|
Config: configs/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-be9610cc.pth
|
|
- Name: pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 320000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: COCO-Stuff 164k
|
|
Metrics:
|
|
mIoU: 41.95
|
|
mIoU(ms+flip): 42.42
|
|
Config: configs/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-72220c60.pth
|
|
- Name: pspnet_r18-d8_512x512_80k_loveda
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-18-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 37.22
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 1.45
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: LoveDA
|
|
Metrics:
|
|
mIoU: 48.62
|
|
mIoU(ms+flip): 47.57
|
|
Config: configs/pspnet/pspnet_r18-d8_512x512_80k_loveda.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100-b97697f1.pth
|
|
- Name: pspnet_r50-d8_512x512_80k_loveda
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-50-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 151.52
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.14
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: LoveDA
|
|
Metrics:
|
|
mIoU: 50.46
|
|
mIoU(ms+flip): 50.19
|
|
Config: configs/pspnet/pspnet_r50-d8_512x512_80k_loveda.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728-88610f9f.pth
|
|
- Name: pspnet_r101-d8_512x512_80k_loveda
|
|
In Collection: pspnet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 218.34
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 9.61
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: LoveDA
|
|
Metrics:
|
|
mIoU: 51.86
|
|
mIoU(ms+flip): 51.34
|
|
Config: configs/pspnet/pspnet_r101-d8_512x512_80k_loveda.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212-1c06c6a8.pth
|