mmsegmentation/tests/test_models/test_necks/test_multilevel_neck.py
谢昕辰 737544f1c5
add configs for vit backbone plus decode_heads (#520)
* add config

* add cityscapes config

* add default value to docstring

* fix lint

* add deit-s and deit-b

* add readme

* add eps at norm_cfg

* add drop_path_rate experiment

* add deit case at init_weight

* add upernet result

* update result and add upernet 160k config

* update upernet result and fix settings

* Update iters number

* update result and delete some configs

* fix import error

* fix drop_path_rate

* update result and restore config

* update benchmark result

* remove cityscapes exp

* remove neck

* neck exp

* add more configs

* fix init error

* fix ffn setting

* update result

* update results

* update result

* update results and fill table

* delete or rename configs

* fix link delimiter

* rename configs and fix link

* rename neck to mln
2021-07-01 23:00:39 +08:00

32 lines
1018 B
Python

import torch
from mmseg.models import MultiLevelNeck
def test_multilevel_neck():
# Test init_weights
MultiLevelNeck([266], 256).init_weights()
# Test multi feature maps
in_channels = [256, 512, 1024, 2048]
inputs = [torch.randn(1, c, 14, 14) for i, c in enumerate(in_channels)]
neck = MultiLevelNeck(in_channels, 256)
outputs = neck(inputs)
assert outputs[0].shape == torch.Size([1, 256, 7, 7])
assert outputs[1].shape == torch.Size([1, 256, 14, 14])
assert outputs[2].shape == torch.Size([1, 256, 28, 28])
assert outputs[3].shape == torch.Size([1, 256, 56, 56])
# Test one feature map
in_channels = [768]
inputs = [torch.randn(1, 768, 14, 14)]
neck = MultiLevelNeck(in_channels, 256)
outputs = neck(inputs)
assert outputs[0].shape == torch.Size([1, 256, 7, 7])
assert outputs[1].shape == torch.Size([1, 256, 14, 14])
assert outputs[2].shape == torch.Size([1, 256, 28, 28])
assert outputs[3].shape == torch.Size([1, 256, 56, 56])