439 lines
15 KiB
YAML
439 lines
15 KiB
YAML
Collections:
|
|
- Name: OCRNet
|
|
Metadata:
|
|
Training Data:
|
|
- Cityscapes
|
|
- ADE20K
|
|
- Pascal VOC 2012 + Aug
|
|
Paper:
|
|
URL: https://arxiv.org/abs/1909.11065
|
|
Title: Object-Contextual Representations for Semantic Segmentation
|
|
README: configs/ocrnet/README.md
|
|
Code:
|
|
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86
|
|
Version: v0.17.0
|
|
Converted From:
|
|
Code: https://github.com/openseg-group/OCNet.pytorch
|
|
Models:
|
|
- Name: ocrnet_hr18s_4xb2-40k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 95.69
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 3.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 74.3
|
|
mIoU(ms+flip): 75.95
|
|
Config: configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes/ocrnet_hr18s_512x1024_40k_cityscapes_20200601_033304-fa2436c2.pth
|
|
- Name: ocrnet_hr18_4xb2-40k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 133.33
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 4.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.72
|
|
mIoU(ms+flip): 79.49
|
|
Config: configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth
|
|
- Name: ocrnet_hr48_4xb2-40k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 236.97
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 8.0
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.58
|
|
mIoU(ms+flip): 81.79
|
|
Config: configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth
|
|
- Name: ocrnet_hr18s_4xb2-80k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 77.16
|
|
mIoU(ms+flip): 78.66
|
|
Config: configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth
|
|
- Name: ocrnet_hr18_4xb2-80k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.57
|
|
mIoU(ms+flip): 80.46
|
|
Config: configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth
|
|
- Name: ocrnet_hr48_4xb2-80k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.7
|
|
mIoU(ms+flip): 81.87
|
|
Config: configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth
|
|
- Name: ocrnet_hr18s_4xb2-160k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 78.45
|
|
mIoU(ms+flip): 79.97
|
|
Config: configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth
|
|
- Name: ocrnet_hr18_4xb2-160k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 79.47
|
|
mIoU(ms+flip): 80.91
|
|
Config: configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth
|
|
- Name: ocrnet_hr48_4xb2-160k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,1024)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 81.35
|
|
mIoU(ms+flip): 82.7
|
|
Config: configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth
|
|
- Name: ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.09
|
|
Config: configs/ocrnet/ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth
|
|
- Name: ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 40000
|
|
inference time (ms/im):
|
|
- value: 331.13
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 8.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.3
|
|
Config: configs/ocrnet/ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth
|
|
- Name: ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: R-101-D8
|
|
crop size: (512,1024)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 331.13
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,1024)
|
|
Training Memory (GB): 8.8
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Cityscapes
|
|
Metrics:
|
|
mIoU: 80.81
|
|
Config: configs/ocrnet/ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth
|
|
- Name: ocrnet_hr18s_4xb4-80k_ade20k-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 34.51
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 6.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 35.06
|
|
mIoU(ms+flip): 35.8
|
|
Config: configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth
|
|
- Name: ocrnet_hr18_4xb4-80k_ade20k-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 52.83
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 7.9
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 37.79
|
|
mIoU(ms+flip): 39.16
|
|
Config: configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth
|
|
- Name: ocrnet_hr48_4xb4-80k_ade20k-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 80000
|
|
inference time (ms/im):
|
|
- value: 58.86
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 11.2
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.0
|
|
mIoU(ms+flip): 44.3
|
|
Config: configs/ocrnet/ocrnet_hr48_4xb4-80k_ade20k-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth
|
|
- Name: ocrnet_hr18s_4xb4-80k_ade20k-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 37.19
|
|
mIoU(ms+flip): 38.4
|
|
Config: configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth
|
|
- Name: ocrnet_hr18_4xb4-80k_ade20k-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 39.32
|
|
mIoU(ms+flip): 40.8
|
|
Config: configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth
|
|
- Name: ocrnet_hr48_4xb4-160k_ade20k-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 160000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: ADE20K
|
|
Metrics:
|
|
mIoU: 43.25
|
|
mIoU(ms+flip): 44.88
|
|
Config: configs/ocrnet/ocrnet_hr48_4xb4-160k_ade20k-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth
|
|
- Name: ocrnet_hr18s_4xb4-20k_voc12aug-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 31.7
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 3.5
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 71.7
|
|
mIoU(ms+flip): 73.84
|
|
Config: configs/ocrnet/ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth
|
|
- Name: ocrnet_hr18_4xb4-20k_voc12aug-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 50.23
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 4.7
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 74.75
|
|
mIoU(ms+flip): 77.11
|
|
Config: configs/ocrnet/ocrnet_hr18_4xb4-20k_voc12aug-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth
|
|
- Name: ocrnet_hr48_4xb4-20k_voc12aug-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 20000
|
|
inference time (ms/im):
|
|
- value: 56.09
|
|
hardware: V100
|
|
backend: PyTorch
|
|
batch size: 1
|
|
mode: FP32
|
|
resolution: (512,512)
|
|
Training Memory (GB): 8.1
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.72
|
|
mIoU(ms+flip): 79.87
|
|
Config: configs/ocrnet/ocrnet_hr48_4xb4-20k_voc12aug-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth
|
|
- Name: ocrnet_hr18s_4xb4-40k_voc12aug-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18-Small
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 72.76
|
|
mIoU(ms+flip): 74.6
|
|
Config: configs/ocrnet/ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth
|
|
- Name: ocrnet_hr18_4xb4-40k_voc12aug-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W18
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 74.98
|
|
mIoU(ms+flip): 77.4
|
|
Config: configs/ocrnet/ocrnet_hr18_4xb4-40k_voc12aug-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth
|
|
- Name: ocrnet_hr48_4xb4-40k_voc12aug-512x512
|
|
In Collection: OCRNet
|
|
Metadata:
|
|
backbone: HRNetV2p-W48
|
|
crop size: (512,512)
|
|
lr schd: 40000
|
|
Results:
|
|
- Task: Semantic Segmentation
|
|
Dataset: Pascal VOC 2012 + Aug
|
|
Metrics:
|
|
mIoU: 77.14
|
|
mIoU(ms+flip): 79.71
|
|
Config: configs/ocrnet/ocrnet_hr48_4xb4-40k_voc12aug-512x512.py
|
|
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth
|