mmsegmentation/configs/_base_/models/erfnet_fcn.py

33 lines
1008 B
Python

# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained=None,
backbone=dict(
type='ERFNet',
in_channels=3,
enc_downsample_channels=(16, 64, 128),
enc_stage_non_bottlenecks=(5, 8),
enc_non_bottleneck_dilations=(2, 4, 8, 16),
enc_non_bottleneck_channels=(64, 128),
dec_upsample_channels=(64, 16),
dec_stages_non_bottleneck=(2, 2),
dec_non_bottleneck_channels=(64, 16),
dropout_ratio=0.1,
init_cfg=None),
decode_head=dict(
type='FCNHead',
in_channels=16,
channels=128,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))