75 lines
2.1 KiB
Python
75 lines
2.1 KiB
Python
# model settings
|
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
|
model = dict(
|
|
type='EncoderDecoder',
|
|
backbone=dict(
|
|
type='ICNet',
|
|
backbone_cfg=dict(
|
|
type='ResNetV1c',
|
|
in_channels=3,
|
|
depth=50,
|
|
num_stages=4,
|
|
out_indices=(0, 1, 2, 3),
|
|
dilations=(1, 1, 2, 4),
|
|
strides=(1, 2, 1, 1),
|
|
norm_cfg=norm_cfg,
|
|
norm_eval=False,
|
|
style='pytorch',
|
|
contract_dilation=True),
|
|
in_channels=3,
|
|
layer_channels=(512, 2048),
|
|
light_branch_middle_channels=32,
|
|
psp_out_channels=512,
|
|
out_channels=(64, 256, 256),
|
|
norm_cfg=norm_cfg,
|
|
align_corners=False,
|
|
),
|
|
neck=dict(
|
|
type='ICNeck',
|
|
in_channels=(64, 256, 256),
|
|
out_channels=128,
|
|
norm_cfg=norm_cfg,
|
|
align_corners=False),
|
|
decode_head=dict(
|
|
type='FCNHead',
|
|
in_channels=128,
|
|
channels=128,
|
|
num_convs=1,
|
|
in_index=2,
|
|
dropout_ratio=0,
|
|
num_classes=19,
|
|
norm_cfg=norm_cfg,
|
|
concat_input=False,
|
|
align_corners=False,
|
|
loss_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
|
auxiliary_head=[
|
|
dict(
|
|
type='FCNHead',
|
|
in_channels=128,
|
|
channels=128,
|
|
num_convs=1,
|
|
num_classes=19,
|
|
in_index=0,
|
|
norm_cfg=norm_cfg,
|
|
concat_input=False,
|
|
align_corners=False,
|
|
loss_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
|
dict(
|
|
type='FCNHead',
|
|
in_channels=128,
|
|
channels=128,
|
|
num_convs=1,
|
|
num_classes=19,
|
|
in_index=1,
|
|
norm_cfg=norm_cfg,
|
|
concat_input=False,
|
|
align_corners=False,
|
|
loss_decode=dict(
|
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
|
],
|
|
# model training and testing settings
|
|
train_cfg=dict(),
|
|
test_cfg=dict(mode='whole'))
|