mmsegmentation/configs/vit/vit.yml

258 lines
7.9 KiB
YAML

Collections:
- Name: vit
Metadata:
Training Data:
- ADE20K
Paper:
URL: https://arxiv.org/pdf/2010.11929.pdf
Title: Vision Transformer
README: configs/vit/README.md
Code:
URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/vit.py#L98
Version: v0.17.0
Converted From:
Code: https://github.com/google-research/vision_transformer
Models:
- Name: upernet_vit-b16_mln_512x512_80k_ade20k
In Collection: vit
Metadata:
backbone: ViT-B + MLN
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 144.09
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.2
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.71
mIoU(ms+flip): 49.51
Config: configs/vit/upernet_vit-b16_mln_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k_20210624_130547-0403cee1.pth
- Name: upernet_vit-b16_mln_512x512_160k_ade20k
In Collection: vit
Metadata:
backbone: ViT-B + MLN
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 131.93
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.2
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 46.75
mIoU(ms+flip): 48.46
Config: configs/vit/upernet_vit-b16_mln_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k_20210624_130547-852fa768.pth
- Name: upernet_vit-b16_ln_mln_512x512_160k_ade20k
In Collection: vit
Metadata:
backbone: ViT-B + LN + MLN
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 146.63
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.21
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.73
mIoU(ms+flip): 49.95
Config: configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k_20210621_172828-f444c077.pth
- Name: upernet_deit-s16_512x512_80k_ade20k
In Collection: vit
Metadata:
backbone: DeiT-S
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 33.5
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 4.68
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.96
mIoU(ms+flip): 43.79
Config: configs/vit/upernet_deit-s16_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k_20210624_095228-afc93ec2.pth
- Name: upernet_deit-s16_512x512_160k_ade20k
In Collection: vit
Metadata:
backbone: DeiT-S
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 34.26
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 4.68
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.87
mIoU(ms+flip): 43.79
Config: configs/vit/upernet_deit-s16_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k_20210621_160903-5110d916.pth
- Name: upernet_deit-s16_mln_512x512_160k_ade20k
In Collection: vit
Metadata:
backbone: DeiT-S + MLN
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 89.45
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 5.69
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.82
mIoU(ms+flip): 45.07
Config: configs/vit/upernet_deit-s16_mln_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k_20210621_161021-fb9a5dfb.pth
- Name: upernet_deit-s16_ln_mln_512x512_160k_ade20k
In Collection: vit
Metadata:
backbone: DeiT-S + LN + MLN
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 80.71
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 5.69
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.52
mIoU(ms+flip): 45.01
Config: configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k_20210621_161021-c0cd652f.pth
- Name: upernet_deit-b16_512x512_80k_ade20k
In Collection: vit
Metadata:
backbone: DeiT-B
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 103.2
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 7.75
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.24
mIoU(ms+flip): 46.73
Config: configs/vit/upernet_deit-b16_512x512_80k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k_20210624_130529-1e090789.pth
- Name: upernet_deit-b16_512x512_160k_ade20k
In Collection: vit
Metadata:
backbone: DeiT-B
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 96.25
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 7.75
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.36
mIoU(ms+flip): 47.16
Config: configs/vit/upernet_deit-b16_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k_20210621_180100-828705d7.pth
- Name: upernet_deit-b16_mln_512x512_160k_ade20k
In Collection: vit
Metadata:
backbone: DeiT-B + MLN
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 128.53
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.21
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.46
mIoU(ms+flip): 47.16
Config: configs/vit/upernet_deit-b16_mln_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k_20210621_191949-4e1450f3.pth
- Name: upernet_deit-b16_ln_mln_512x512_160k_ade20k
In Collection: vit
Metadata:
backbone: DeiT-B + LN + MLN
crop size: (512,512)
lr schd: 160000
inference time (ms/im):
- value: 129.03
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 9.21
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.37
mIoU(ms+flip): 47.23
Config: configs/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k_20210623_153535-8a959c14.pth