Miao Zheng ff95416c3b
[Features]Support dump segment predition (#2712)
## Motivation

1. It is used to save the segmentation predictions as files and upload
these files to a test server

## Modification

1. Add output_file and format only in `IoUMetric`
 
## BC-breaking (Optional)

No

## Use cases (Optional)

If this PR introduces a new feature, it is better to list some use cases
here, and update the documentation.

## Checklist

1. Pre-commit or other linting tools are used to fix the potential lint
issues.
3. The modification is covered by complete unit tests. If not, please
add more unit test to ensure the correctness.
4. If the modification has potential influence on downstream projects,
this PR should be tested with downstream projects, like MMDet or
MMDet3D.
5. The documentation has been modified accordingly, like docstring or
example tutorials.
2023-03-17 22:58:08 +08:00

108 lines
3.9 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import numpy as np
from mmcv.transforms import to_tensor
from mmcv.transforms.base import BaseTransform
from mmengine.structures import PixelData
from mmseg.registry import TRANSFORMS
from mmseg.structures import SegDataSample
@TRANSFORMS.register_module()
class PackSegInputs(BaseTransform):
"""Pack the inputs data for the semantic segmentation.
The ``img_meta`` item is always populated. The contents of the
``img_meta`` dictionary depends on ``meta_keys``. By default this includes:
- ``img_path``: filename of the image
- ``ori_shape``: original shape of the image as a tuple (h, w, c)
- ``img_shape``: shape of the image input to the network as a tuple \
(h, w, c). Note that images may be zero padded on the \
bottom/right if the batch tensor is larger than this shape.
- ``pad_shape``: shape of padded images
- ``scale_factor``: a float indicating the preprocessing scale
- ``flip``: a boolean indicating if image flip transform was used
- ``flip_direction``: the flipping direction
Args:
meta_keys (Sequence[str], optional): Meta keys to be packed from
``SegDataSample`` and collected in ``data[img_metas]``.
Default: ``('img_path', 'ori_shape',
'img_shape', 'pad_shape', 'scale_factor', 'flip',
'flip_direction')``
"""
def __init__(self,
meta_keys=('img_path', 'seg_map_path', 'ori_shape',
'img_shape', 'pad_shape', 'scale_factor', 'flip',
'flip_direction', 'reduce_zero_label')):
self.meta_keys = meta_keys
def transform(self, results: dict) -> dict:
"""Method to pack the input data.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict:
- 'inputs' (obj:`torch.Tensor`): The forward data of models.
- 'data_sample' (obj:`SegDataSample`): The annotation info of the
sample.
"""
packed_results = dict()
if 'img' in results:
img = results['img']
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
if not img.flags.c_contiguous:
img = to_tensor(np.ascontiguousarray(img.transpose(2, 0, 1)))
else:
img = img.transpose(2, 0, 1)
img = to_tensor(img).contiguous()
packed_results['inputs'] = img
data_sample = SegDataSample()
if 'gt_seg_map' in results:
if len(results['gt_seg_map'].shape) == 2:
data = to_tensor(results['gt_seg_map'][None,
...].astype(np.int64))
else:
warnings.warn('Please pay attention your ground truth '
'segmentation map, usually the segmentation '
'map is 2D, but got '
f'{results["gt_seg_map"].shape}')
data = to_tensor(results['gt_seg_map'].astype(np.int64))
gt_sem_seg_data = dict(data=data)
data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data)
if 'gt_edge_map' in results:
gt_edge_data = dict(
data=to_tensor(results['gt_edge_map'][None,
...].astype(np.int64)))
data_sample.set_data(dict(gt_edge_map=PixelData(**gt_edge_data)))
img_meta = {}
for key in self.meta_keys:
if key in results:
img_meta[key] = results[key]
data_sample.set_metainfo(img_meta)
packed_results['data_samples'] = data_sample
return packed_results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(meta_keys={self.meta_keys})'
return repr_str