mmsegmentation/mmseg/datasets/loveda.py

93 lines
3.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import mmcv
import numpy as np
from PIL import Image
from .builder import DATASETS
from .custom import CustomDataset
@DATASETS.register_module()
class LoveDADataset(CustomDataset):
"""LoveDA dataset.
In segmentation map annotation for LoveDA, 0 is the ignore index.
``reduce_zero_label`` should be set to True. The ``img_suffix`` and
``seg_map_suffix`` are both fixed to '.png'.
"""
CLASSES = ('background', 'building', 'road', 'water', 'barren', 'forest',
'agricultural')
PALETTE = [[255, 255, 255], [255, 0, 0], [255, 255, 0], [0, 0, 255],
[159, 129, 183], [0, 255, 0], [255, 195, 128]]
def __init__(self, **kwargs):
super(LoveDADataset, self).__init__(
img_suffix='.png',
seg_map_suffix='.png',
reduce_zero_label=True,
**kwargs)
def results2img(self, results, imgfile_prefix, indices=None):
"""Write the segmentation results to images.
Args:
results (list[ndarray]): Testing results of the
dataset.
imgfile_prefix (str): The filename prefix of the png files.
If the prefix is "somepath/xxx",
the png files will be named "somepath/xxx.png".
indices (list[int], optional): Indices of input results, if not
set, all the indices of the dataset will be used.
Default: None.
Returns:
list[str: str]: result txt files which contains corresponding
semantic segmentation images.
"""
mmcv.mkdir_or_exist(imgfile_prefix)
result_files = []
for result, idx in zip(results, indices):
filename = self.img_infos[idx]['filename']
basename = osp.splitext(osp.basename(filename))[0]
png_filename = osp.join(imgfile_prefix, f'{basename}.png')
# The index range of official requirement is from 0 to 6.
output = Image.fromarray(result.astype(np.uint8))
output.save(png_filename)
result_files.append(png_filename)
return result_files
def format_results(self, results, imgfile_prefix, indices=None):
"""Format the results into dir (standard format for LoveDA evaluation).
Args:
results (list): Testing results of the dataset.
imgfile_prefix (str): The prefix of images files. It
includes the file path and the prefix of filename, e.g.,
"a/b/prefix".
indices (list[int], optional): Indices of input results,
if not set, all the indices of the dataset will be used.
Default: None.
Returns:
tuple: (result_files, tmp_dir), result_files is a list containing
the image paths, tmp_dir is the temporal directory created
for saving json/png files when img_prefix is not specified.
"""
if indices is None:
indices = list(range(len(self)))
assert isinstance(results, list), 'results must be a list.'
assert isinstance(indices, list), 'indices must be a list.'
result_files = self.results2img(results, imgfile_prefix, indices)
return result_files