mmselfsup/docs/tutorials/2_data_pipeline.md

70 lines
2.1 KiB
Markdown
Raw Normal View History

2021-12-15 19:06:36 +08:00
# Tutorial 2: Customize Data Pipelines
- [Tutorial 2: Customize Data Pipelines](#tutorial-2-customize-data-pipelines)
- [Overview of `Pipeline`](#overview-of-pipeline)
- [Creating new augmentations in `Pipeline`](#creating-new-augmentations-in-pipeline)
## Overview of `Pipeline`
2021-12-15 21:53:12 +08:00
`DataSource` and `Pipeline` are two important components in `Dataset`. We have introduced `DataSource` in [add_new_dataset](./1_new_dataset.md). And the `Pipeline` is responsible for applying a series of data augmentations to images, such as random flip.
2021-12-15 19:06:36 +08:00
Here is a config example of `Pipeline` for `SimCLR` training:
```py
train_pipeline = [
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip'),
dict(
type='RandomAppliedTrans',
transforms=[
dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)
],
p=0.8),
dict(type='RandomGrayscale', p=0.2),
dict(type='GaussianBlur', sigma_min=0.1, sigma_max=2.0, p=0.5)
]
```
Every augmentation in the `Pipeline` receives an image as input and outputs an augmented image.
## Creating new augmentations in `Pipeline`
1.Write a new transformation function in [transforms.py](../../mmselfsup/datasets/pipelines/transforms.py) and overwrite the `__call__` function, which takes a `Pillow` image as input:
```py
@PIPELINES.register_module()
class MyTransform(object):
def __call__(self, img):
# apply transforms on img
return img
```
2.Use it in config files. We reuse the config file shown above and add `MyTransform` to it.
```py
train_pipeline = [
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip'),
dict(type='MyTransform'),
dict(
type='RandomAppliedTrans',
transforms=[
dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)
],
p=0.8),
dict(type='RandomGrayscale', p=0.2),
dict(type='GaussianBlur', sigma_min=0.1, sigma_max=2.0, p=0.5)
]
```