mmselfsup/openselfsup/models/relative_loc.py

107 lines
3.8 KiB
Python
Raw Normal View History

2020-07-08 22:30:48 +08:00
import torch
import torch.nn as nn
from openselfsup.utils import print_log
from . import builder
from .registry import MODELS
@MODELS.register_module
class RelativeLoc(nn.Module):
2020-09-02 18:49:39 +08:00
"""Relative patch location.
Implementation of "Unsupervised Visual Representation Learning
by Context Prediction (https://arxiv.org/abs/1505.05192)".
Args:
backbone (nn.Module): Module of backbone ConvNet.
neck (nn.Module): Module of deep features to compact feature vectors.
head (nn.Module): Module of loss functions.
pretrained (str, optional): Path to pre-trained weights. Default: None.
"""
2020-07-08 22:30:48 +08:00
2020-07-09 15:34:22 +08:00
def __init__(self, backbone, neck=None, head=None, pretrained=None):
2020-07-08 22:30:48 +08:00
super(RelativeLoc, self).__init__()
self.backbone = builder.build_backbone(backbone)
2020-07-09 15:34:22 +08:00
if neck is not None:
self.neck = builder.build_neck(neck)
2020-07-08 22:30:48 +08:00
if head is not None:
self.head = builder.build_head(head)
self.init_weights(pretrained=pretrained)
def init_weights(self, pretrained=None):
2020-09-02 18:49:39 +08:00
"""Initialize the weights of model.
Args:
pretrained (str, optional): Path to pre-trained weights.
Default: None.
"""
2020-07-08 22:30:48 +08:00
if pretrained is not None:
print_log('load model from: {}'.format(pretrained), logger='root')
self.backbone.init_weights(pretrained=pretrained)
2020-07-09 15:34:22 +08:00
self.neck.init_weights(init_linear='normal')
self.head.init_weights(init_linear='normal', std=0.005)
2020-07-08 22:30:48 +08:00
def forward_backbone(self, img):
2020-09-02 18:49:39 +08:00
"""Forward backbone.
Args:
img (Tensor): Input images of shape (N, C, H, W).
Typically these should be mean centered and std scaled.
2020-07-08 22:30:48 +08:00
Returns:
2020-09-02 18:49:39 +08:00
tuple[Tensor]: backbone outputs.
2020-07-08 22:30:48 +08:00
"""
x = self.backbone(img)
return x
def forward_train(self, img, patch_label, **kwargs):
2020-09-02 18:49:39 +08:00
"""Forward computation during training.
Args:
img (Tensor): Input images of shape (N, C, H, W).
Typically these should be mean centered and std scaled.
patch_label (Tensor): Labels for the relative patch locations.
kwargs: Any keyword arguments to be used to forward.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
2020-07-08 22:30:48 +08:00
img1, img2 = torch.chunk(img, 2, dim=1)
x1 = self.forward_backbone(img1) # tuple
x2 = self.forward_backbone(img2) # tuple
2020-07-09 15:34:22 +08:00
x = (torch.cat((x1[0], x2[0]), dim=1),)
x = self.neck(x)
2020-07-08 22:30:48 +08:00
outs = self.head(x)
loss_inputs = (outs, patch_label)
losses = self.head.loss(*loss_inputs)
return losses
def forward_test(self, img, **kwargs):
img1, img2 = torch.chunk(img, 2, dim=1)
x1 = self.forward_backbone(img1) # tuple
x2 = self.forward_backbone(img2) # tuple
2020-07-09 15:34:22 +08:00
x = (torch.cat((x1[0], x2[0]), dim=1),)
x = self.neck(x)
2020-07-08 22:30:48 +08:00
outs = self.head(x)
keys = ['head{}'.format(i) for i in range(len(outs))]
2020-07-09 15:34:22 +08:00
out_tensors = [out.cpu() for out in outs]
2020-07-08 22:30:48 +08:00
return dict(zip(keys, out_tensors))
def forward(self, img, patch_label=None, mode='train', **kwargs):
2020-09-02 18:49:39 +08:00
if mode != "extract" and img.dim() == 5: # Nx8x(2C)xHxW
assert patch_label.dim() == 2 # Nx8
2020-07-08 22:30:48 +08:00
img = img.view(
img.size(0) * img.size(1), img.size(2), img.size(3),
2020-09-02 18:49:39 +08:00
img.size(4)) # (8N)x(2C)xHxW
patch_label = torch.flatten(patch_label) # (8N)
2020-07-08 22:30:48 +08:00
if mode == 'train':
return self.forward_train(img, patch_label, **kwargs)
elif mode == 'test':
return self.forward_test(img, **kwargs)
elif mode == 'extract':
return self.forward_backbone(img)
else:
raise Exception("No such mode: {}".format(mode))