mmselfsup/tools/test.py

113 lines
3.9 KiB
Python
Raw Normal View History

2021-12-15 18:42:57 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
2020-06-16 00:05:18 +08:00
import argparse
import os
import os.path as osp
import time
import mmcv
import torch
2021-12-15 18:42:57 +08:00
from mmcv import DictAction
2020-06-16 00:05:18 +08:00
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
2021-12-15 18:42:57 +08:00
from mmselfsup.datasets import build_dataloader, build_dataset
from mmselfsup.models import build_algorithm
from mmselfsup.utils import get_root_logger, multi_gpu_test, single_gpu_test
2020-06-16 00:05:18 +08:00
def parse_args():
parser = argparse.ArgumentParser(
description='MMDet test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work_dir',
type=str,
default=None,
help='the dir to save logs and models')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
2021-12-15 18:42:57 +08:00
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
2020-06-16 00:05:18 +08:00
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
cfg = mmcv.Config.fromfile(args.config)
2021-12-15 18:42:57 +08:00
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
2020-06-16 00:05:18 +08:00
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
2021-12-15 18:42:57 +08:00
# work_dir is determined in this priority: CLI > segment in file > filename
2020-06-16 00:05:18 +08:00
if args.work_dir is not None:
2021-12-15 18:42:57 +08:00
# update configs according to CLI args if args.work_dir is not None
2020-06-16 00:05:18 +08:00
cfg.work_dir = args.work_dir
2021-12-15 18:42:57 +08:00
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
work_type = args.config.split('/')[1]
cfg.work_dir = osp.join('./work_dirs', work_type,
osp.splitext(osp.basename(args.config))[0])
2020-06-16 00:05:18 +08:00
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# logger
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
2021-12-15 18:42:57 +08:00
log_file = osp.join(cfg.work_dir, f'test_{timestamp}.log')
2020-06-16 00:05:18 +08:00
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
# build the dataloader
dataset = build_dataset(cfg.data.val)
data_loader = build_dataloader(
dataset,
imgs_per_gpu=cfg.data.imgs_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
# build the model and load checkpoint
2021-12-15 18:42:57 +08:00
model = build_algorithm(cfg.model)
2020-06-16 00:05:18 +08:00
load_checkpoint(model, args.checkpoint, map_location='cpu')
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs = multi_gpu_test(model, data_loader) # dict{key: np.ndarray}
rank, _ = get_dist_info()
if rank == 0:
for name, val in outputs.items():
2021-12-15 18:42:57 +08:00
dataset.evaluate(torch.from_numpy(val), name, logger, topk=(1, 5))
2020-06-16 00:05:18 +08:00
if __name__ == '__main__':
main()