mmselfsup/demo/mmselfsup_colab_tutorial.ipynb

2426 lines
138 KiB
Plaintext
Raw Normal View History

Bump version to v0.8.0 (#269) * [Fix]: Fix mmcls upgrade bug (#235) * [Feature]: Add multi machine dist_train (#232) * [Feature]: Add multi machine dist_train * [Fix]: Change bash to sh * [Fix]: Fix missing sh suffix * [Refactor]: Change bash to sh * [Refactor] Add unit test (#234) * [Refactor] add unit test * update workflow * update * [Fix] fix lint * update test * refactor moco and densecl unit test * fix lint * add unit test * update unit test * remove modification * [Feature]: Add MAE metafile (#238) * [Feature]: Add MAE metafile * [Fix]: Fix lint * [Fix]: Change LARS to AdamW in the metafile of MAE * [Fix] fix codecov bug (#241) * [Fix] fix codecov bug * update comment * [Refactor] Using MMCls backbones (#233) * [Refactor] using backbones from MMCls * [Refactor] modify the unit test * [Fix] modify default setting of out_indices * [Docs] fix lint * [Refactor] modify super init * [Refactore] remove res_layer.py * using mmcv PatchEmbed * [Fix]: Fix outdated problem (#249) * [Fix]: Fix outdated problem * [Fix]: Update MoCov3 bibtex * [Fix]: Use abs path in README * [Fix]: Reformat MAE bibtex * [Fix]: Reformat MoCov3 bibtex * [Feature] Resume from the latest checkpoint automatically. (#245) * [Feature] Resume from the latest checkpoint automatically. * fix windows path problem * fix lint * add code reference * [Docs] add docstring for ResNet and ResNeXt (#252) * [Feature] support KNN benchmark (#243) * [Feature] support KNN benchmark * [Fix] add docstring and multi-machine testing * [Fix] fix lint * [Fix] change args format and check init_cfg * [Docs] add benchmark tutorial * [Docs] add benchmark results * [Feature]: SimMIM supported (#239) * [Feature]: SimMIM Pretrain * [Feature]: Add mix precision and 16x128 config * [Fix]: Fix config import bug * [Fix]: Fix config bug * [Feature]: Simim Finetune * [Fix]: Log every 100 * [Fix]: Fix eval problem * [Feature]: Add docstring for simmim * [Refactor]: Merge layer wise lr decay to Default constructor * [Fix]:Fix simmim evaluation bug * [Fix]: Change model to be compatible to latest version of mmcls * [Fix]: Fix lint * [Fix]: Rewrite forward_train for classification cls * [Feature]: Add UT * [Fix]: Fix lint * [Feature]: Add 32 gpus training for simmim ft * [Fix]: Rename mmcls classifier wrapper * [Fix]: Add docstring to SimMIMNeck * [Feature]: Generate docstring for the forward function of simmim encoder * [Fix]: Rewrite the class docstring for constructor * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Reformat config * [Fix]: Add img resolution * [Feature]: Add readme and metafile * [Fix]: Fix typo in README.md * [Fix]: Change BlackMaskGen to BlockwiseMaskGenerator * [Fix]: Change the name of SwinForSimMIM * [Fix]: Delete irrelevant files * [Feature]: Create extra transformerfinetuneconstructor * [Fix]: Fix lint * [Fix]: Update SimMIM README * [Fix]: Change SimMIMPretrainHead to SimMIMHead * [Fix]: Fix the docstring of ft constructor * [Fix]: Fix UT * [Fix]: Recover deletion Co-authored-by: Your <you@example.com> * [Fix] add seed to distributed sampler (#250) * [Fix] add seed to distributed sampler * fix lint * [Feature] Add ImageNet21k (#225) * solve memory leak by limited implementation * fix lint problem Co-authored-by: liming <liming.ai@bytedance.com> * [Refactor] change args format to '--a-b' (#253) * [Refactor] change args format to `--a-b` * modify tsne script * modify 'sh' files * modify getting_started.md * modify getting_started.md * [Fix] fix 'mkdir' error in prepare_voc07_cls.sh (#261) * [Fix] fix positional parameter error (#260) * [Fix] fix command errors in benchmarks tutorial (#263) * [Docs] add brief installation steps in README.md (#265) * [Docs] add colab tutorial (#247) * [Docs] add colab tutorial * fix lint * modify the colab tutorial, using API to train the model * modify the description * remove # * modify the command * [Docs] translate 6_benchmarks.md into Chinese (#262) * [Docs] translate 6_benchmarks.md into Chinese * Update 6_benchmarks.md change 基准 to 基准评测 * Update 6_benchmarks.md (1) Add Chinese translation of ‘1 folder for ImageNet nearest-neighbor classification task’ (2) 数据预准备 -> 数据准备 * [Docs] remove install scripts in README (#267) * [Docs] Update version information in dev branch (#268) * update version to v0.8.0 * fix lint * [Fix]: Install the latest mmcls * [Fix]: Add SimMIM in RAEDME Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> Co-authored-by: Your <you@example.com> Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com> Co-authored-by: liming <liming.ai@bytedance.com> Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com> Co-authored-by: YuanLiuuuuuu <3463423099@qq.com>
2022-03-31 18:47:54 +08:00
{
"cells": [
{
"cell_type": "markdown",
"id": "c1604535",
"metadata": {
"id": "c1604535"
},
"source": [
"<a href=\"https://colab.research.google.com/github/open-mmlab/mmselfsup/blob/master/demo/mmselfsup_colab_tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"id": "d76e94d0",
"metadata": {
"id": "d76e94d0"
},
"source": [
"# MMSelfSup Tutorial\n",
"In this tutorial, we will introduce the following content:\n",
"\n",
"- How to install MMSelfSup\n",
"- How to train algorithms in MMSelfSup\n",
"- How to train downstream tasks\n",
"\n",
"If you have any other questions, welcome to report issues."
]
},
{
"cell_type": "markdown",
"id": "8159aadf",
"metadata": {
"id": "8159aadf"
},
"source": [
"## How to install MMSelfSup\n",
"\n",
"Before using MMSelfSup, we need to prepare the environment with the following steps:\n",
"\n",
"1. Install Python, CUDA, C/C++ compiler and git\n",
"2. Install PyTorch (CUDA version)\n",
"3. Install dependent codebase (mmcv, mmcls)\n",
"4. Clone mmselfsup source code from GitHub and install it\n",
"\n",
"Because this tutorial is on Google Colab and all necessary packages have been installed, we can skip the first two steps."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "66ed8cfe",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "66ed8cfe",
"outputId": "46f7db9f-770d-4339-aff0-d7f8f005634e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/content\n"
]
}
],
"source": [
"!pwd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "86d5SBUQxpOm",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "86d5SBUQxpOm",
"outputId": "c3521c08-831a-446d-fc35-d86fa89a35de"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"nvcc: NVIDIA (R) Cuda compiler driver\n",
"Copyright (c) 2005-2020 NVIDIA Corporation\n",
"Built on Mon_Oct_12_20:09:46_PDT_2020\n",
"Cuda compilation tools, release 11.1, V11.1.105\n",
"Build cuda_11.1.TC455_06.29190527_0\n"
]
}
],
"source": [
"# Check nvcc version\n",
"!nvcc -V"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "rINWzY4ixpT-",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "rINWzY4ixpT-",
"outputId": "742c399a-eee9-48d4-a0c5-c7eaf717a817"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0\n",
"Copyright (C) 2017 Free Software Foundation, Inc.\n",
"This is free software; see the source for copying conditions. There is NO\n",
"warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n",
"\n"
]
}
],
"source": [
"# Check GCC version\n",
"!gcc --version"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ab8155aa",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ab8155aa",
"outputId": "64072a74-c830-4206-8b3c-9f7398d4e7a9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.10.0+cu111\n",
"True\n"
]
}
],
"source": [
"# Check PyTorch installation\n",
"import torch, torchvision\n",
"print(torch.__version__)\n",
"print(torch.cuda.is_available())"
]
},
{
"cell_type": "markdown",
"id": "18aad462",
"metadata": {
"id": "18aad462"
},
"source": [
"## Install MMCV\n",
"\n",
"MMCV is the basic package of all OpenMMLab packages. We have pre-built wheels on Linux, so we can download and install them directly.\n",
"\n",
"Please pay attention to PyTorch and CUDA versions to match the wheel.\n",
"\n",
"In the above steps, we have checked the version of PyTorch and CUDA, and they are 1.10.2 and 11.3 respectively, so we need to choose the corresponding wheel.\n",
"\n",
"In addition, we can also install the full version of mmcv (mmcv-full). It includes full features and various CUDA ops out of the box, but needs a longer time to build."
]
},
{
"cell_type": "markdown",
"id": "89532489",
"metadata": {
"id": "89532489"
},
"source": [
"MIM is recommended: https://github.com/open-mmlab/mim"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "fb3da020",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "fb3da020",
"outputId": "dfd43ff9-e51d-4dc1-bf7c-f21dde61d7c1"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting openmim\n",
" Downloading openmim-0.1.5.tar.gz (35 kB)\n",
"Requirement already satisfied: Click==7.1.2 in /usr/local/lib/python3.7/dist-packages (from openmim) (7.1.2)\n",
"Collecting colorama\n",
" Downloading colorama-0.4.4-py2.py3-none-any.whl (16 kB)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from openmim) (2.23.0)\n",
"Collecting model-index\n",
" Downloading model_index-0.1.11-py3-none-any.whl (34 kB)\n",
"Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from openmim) (1.3.5)\n",
"Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from openmim) (0.8.9)\n",
"Requirement already satisfied: markdown in /usr/local/lib/python3.7/dist-packages (from model-index->openmim) (3.3.6)\n",
"Collecting ordered-set\n",
" Downloading ordered_set-4.1.0-py3-none-any.whl (7.6 kB)\n",
"Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from model-index->openmim) (3.13)\n",
"Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.7/dist-packages (from markdown->model-index->openmim) (4.11.3)\n",
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown->model-index->openmim) (3.7.0)\n",
"Requirement already satisfied: typing-extensions>=3.6.4 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown->model-index->openmim) (3.10.0.2)\n",
"Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from pandas->openmim) (1.21.5)\n",
"Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->openmim) (2.8.2)\n",
"Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas->openmim) (2018.9)\n",
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->openmim) (1.15.0)\n",
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (2.10)\n",
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (1.24.3)\n",
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (3.0.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->openmim) (2021.10.8)\n",
"Building wheels for collected packages: openmim\n",
" Building wheel for openmim (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for openmim: filename=openmim-0.1.5-py2.py3-none-any.whl size=42503 sha256=6957857625db07e7d2c995d0fa19d98dd58f3daea577a3bc933b16edab669fb4\n",
" Stored in directory: /root/.cache/pip/wheels/16/8b/e1/bdebbbc687aa50224a5ce46fe97a040a0c59f92b34bfc750b6\n",
"Successfully built openmim\n",
"Installing collected packages: ordered-set, model-index, colorama, openmim\n",
"Successfully installed colorama-0.4.4 model-index-0.1.11 openmim-0.1.5 ordered-set-4.1.0\n"
]
}
],
"source": [
"!pip install openmim"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e3e73f09",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "e3e73f09",
"outputId": "4db8c20e-9ce3-4a1c-8755-6c8e17988268"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"installing mmcv-full from wheel.\n",
"Looking in links: https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html\n",
"Collecting mmcv-full==1.4.7\n",
" Downloading https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/mmcv_full-1.4.7-cp37-cp37m-manylinux1_x86_64.whl (46.3 MB)\n",
"\u001b[K |████████████████████████████████| 46.3 MB 158 kB/s \n",
"\u001b[?25hRequirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from mmcv-full==1.4.7) (3.13)\n",
"Requirement already satisfied: Pillow in /usr/local/lib/python3.7/dist-packages (from mmcv-full==1.4.7) (7.1.2)\n",
"Collecting yapf\n",
" Downloading yapf-0.32.0-py2.py3-none-any.whl (190 kB)\n",
"\u001b[K |████████████████████████████████| 190 kB 3.9 MB/s \n",
"\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from mmcv-full==1.4.7) (21.3)\n",
"Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from mmcv-full==1.4.7) (1.21.5)\n",
"Collecting addict\n",
" Downloading addict-2.4.0-py3-none-any.whl (3.8 kB)\n",
"Requirement already satisfied: opencv-python>=3 in /usr/local/lib/python3.7/dist-packages (from mmcv-full==1.4.7) (4.1.2.30)\n",
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->mmcv-full==1.4.7) (3.0.7)\n",
"Installing collected packages: yapf, addict, mmcv-full\n",
"Successfully installed addict-2.4.0 mmcv-full-1.4.7 yapf-0.32.0\n",
"\u001b[32mSuccessfully installed mmcv-full.\u001b[0m\n"
]
}
],
"source": [
"!mim install mmcv-full"
]
},
{
"cell_type": "markdown",
"id": "86e6d589",
"metadata": {
"id": "86e6d589"
},
"source": [
Bump version to v0.9.1 (#322) * [Fix]: Set qkv bias to False for cae and True for mae (#303) * [Fix]: Add mmcls transformer layer choice * [Fix]: Fix transformer encoder layer bug * [Fix]: Change UT of cae * [Feature]: Change the file name of cosine annealing hook (#304) * [Feature]: Change cosine annealing hook file name * [Feature]: Add UT for cosine annealing hook * [Fix]: Fix lint * read tutorials and fix typo (#308) * [Fix] fix config errors in MAE (#307) * update readthedocs algorithm readme (#310) * [Docs] Replace markdownlint with mdformat (#311) * Replace markdownlint with mdformat to avoid installing ruby * fix typo * add 'ba' to codespell ignore-words-list * Configure Myst-parser to parse anchor tag (#309) * [Docs] rewrite install.md (#317) * rewrite the install.md * add faq.md * fix lint * add FAQ to README * add Chinese version * fix typo * fix format * remove modification * fix format * [Docs] refine README.md file (#318) * refine README.md file * fix lint * format language button * rename getting_started.md * revise index.rst * add model_zoo.md to index.rst * fix lint * refine readme Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> * [Enhance] update byol models and results (#319) * Update version information (#321) Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yi Lu <21515006@zju.edu.cn> Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com>
2022-06-01 09:59:05 +08:00
"Besides, you can also use pip to install the packages, but you are supposed to check the pytorch and cuda version manually. The example command is provided below, but you need to modify it according to your PyTorch and CUDA version."
Bump version to v0.8.0 (#269) * [Fix]: Fix mmcls upgrade bug (#235) * [Feature]: Add multi machine dist_train (#232) * [Feature]: Add multi machine dist_train * [Fix]: Change bash to sh * [Fix]: Fix missing sh suffix * [Refactor]: Change bash to sh * [Refactor] Add unit test (#234) * [Refactor] add unit test * update workflow * update * [Fix] fix lint * update test * refactor moco and densecl unit test * fix lint * add unit test * update unit test * remove modification * [Feature]: Add MAE metafile (#238) * [Feature]: Add MAE metafile * [Fix]: Fix lint * [Fix]: Change LARS to AdamW in the metafile of MAE * [Fix] fix codecov bug (#241) * [Fix] fix codecov bug * update comment * [Refactor] Using MMCls backbones (#233) * [Refactor] using backbones from MMCls * [Refactor] modify the unit test * [Fix] modify default setting of out_indices * [Docs] fix lint * [Refactor] modify super init * [Refactore] remove res_layer.py * using mmcv PatchEmbed * [Fix]: Fix outdated problem (#249) * [Fix]: Fix outdated problem * [Fix]: Update MoCov3 bibtex * [Fix]: Use abs path in README * [Fix]: Reformat MAE bibtex * [Fix]: Reformat MoCov3 bibtex * [Feature] Resume from the latest checkpoint automatically. (#245) * [Feature] Resume from the latest checkpoint automatically. * fix windows path problem * fix lint * add code reference * [Docs] add docstring for ResNet and ResNeXt (#252) * [Feature] support KNN benchmark (#243) * [Feature] support KNN benchmark * [Fix] add docstring and multi-machine testing * [Fix] fix lint * [Fix] change args format and check init_cfg * [Docs] add benchmark tutorial * [Docs] add benchmark results * [Feature]: SimMIM supported (#239) * [Feature]: SimMIM Pretrain * [Feature]: Add mix precision and 16x128 config * [Fix]: Fix config import bug * [Fix]: Fix config bug * [Feature]: Simim Finetune * [Fix]: Log every 100 * [Fix]: Fix eval problem * [Feature]: Add docstring for simmim * [Refactor]: Merge layer wise lr decay to Default constructor * [Fix]:Fix simmim evaluation bug * [Fix]: Change model to be compatible to latest version of mmcls * [Fix]: Fix lint * [Fix]: Rewrite forward_train for classification cls * [Feature]: Add UT * [Fix]: Fix lint * [Feature]: Add 32 gpus training for simmim ft * [Fix]: Rename mmcls classifier wrapper * [Fix]: Add docstring to SimMIMNeck * [Feature]: Generate docstring for the forward function of simmim encoder * [Fix]: Rewrite the class docstring for constructor * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Reformat config * [Fix]: Add img resolution * [Feature]: Add readme and metafile * [Fix]: Fix typo in README.md * [Fix]: Change BlackMaskGen to BlockwiseMaskGenerator * [Fix]: Change the name of SwinForSimMIM * [Fix]: Delete irrelevant files * [Feature]: Create extra transformerfinetuneconstructor * [Fix]: Fix lint * [Fix]: Update SimMIM README * [Fix]: Change SimMIMPretrainHead to SimMIMHead * [Fix]: Fix the docstring of ft constructor * [Fix]: Fix UT * [Fix]: Recover deletion Co-authored-by: Your <you@example.com> * [Fix] add seed to distributed sampler (#250) * [Fix] add seed to distributed sampler * fix lint * [Feature] Add ImageNet21k (#225) * solve memory leak by limited implementation * fix lint problem Co-authored-by: liming <liming.ai@bytedance.com> * [Refactor] change args format to '--a-b' (#253) * [Refactor] change args format to `--a-b` * modify tsne script * modify 'sh' files * modify getting_started.md * modify getting_started.md * [Fix] fix 'mkdir' error in prepare_voc07_cls.sh (#261) * [Fix] fix positional parameter error (#260) * [Fix] fix command errors in benchmarks tutorial (#263) * [Docs] add brief installation steps in README.md (#265) * [Docs] add colab tutorial (#247) * [Docs] add colab tutorial * fix lint * modify the colab tutorial, using API to train the model * modify the description * remove # * modify the command * [Docs] translate 6_benchmarks.md into Chinese (#262) * [Docs] translate 6_benchmarks.md into Chinese * Update 6_benchmarks.md change 基准 to 基准评测 * Update 6_benchmarks.md (1) Add Chinese translation of ‘1 folder for ImageNet nearest-neighbor classification task’ (2) 数据预准备 -> 数据准备 * [Docs] remove install scripts in README (#267) * [Docs] Update version information in dev branch (#268) * update version to v0.8.0 * fix lint * [Fix]: Install the latest mmcls * [Fix]: Add SimMIM in RAEDME Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> Co-authored-by: Your <you@example.com> Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com> Co-authored-by: liming <liming.ai@bytedance.com> Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com> Co-authored-by: YuanLiuuuuuu <3463423099@qq.com>
2022-03-31 18:47:54 +08:00
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5b004a18",
"metadata": {
"id": "5b004a18"
},
"outputs": [],
"source": [
"# Install mmcv and mmcls\n",
"!pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10/index.html"
]
},
{
"cell_type": "markdown",
"id": "54815b81",
"metadata": {
"id": "54815b81"
},
"source": [
"## Clone and install mmselfsup"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "207561bb",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "207561bb",
"outputId": "cc3ecfd5-f812-4910-ba46-f46fb99aa42c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cloning into 'mmselfsup'...\n",
"remote: Enumerating objects: 3255, done.\u001b[K\n",
"remote: Counting objects: 100% (872/872), done.\u001b[K\n",
"remote: Compressing objects: 100% (524/524), done.\u001b[K\n",
"remote: Total 3255 (delta 534), reused 446 (delta 347), pack-reused 2383\u001b[K\n",
"Receiving objects: 100% (3255/3255), 1.96 MiB | 6.78 MiB/s, done.\n",
"Resolving deltas: 100% (1911/1911), done.\n",
"/content/mmselfsup\n",
"Obtaining file:///content/mmselfsup\n",
"Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from mmselfsup==0.7.1) (0.16.0)\n",
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from mmselfsup==0.7.1) (3.2.2)\n",
"Collecting mmcls<=0.20.1,>=0.19.0\n",
" Downloading mmcls-0.20.1-py2.py3-none-any.whl (490 kB)\n",
"\u001b[K |████████████████████████████████| 490 kB 4.3 MB/s \n",
"\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from mmselfsup==0.7.1) (1.21.5)\n",
"Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from mmselfsup==0.7.1) (21.3)\n",
"Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from mmselfsup==0.7.1) (1.4.1)\n",
"Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from mmselfsup==0.7.1) (1.15.0)\n",
"Requirement already satisfied: sklearn in /usr/local/lib/python3.7/dist-packages (from mmselfsup==0.7.1) (0.0)\n",
"Requirement already satisfied: tensorboard in /usr/local/lib/python3.7/dist-packages (from mmselfsup==0.7.1) (2.8.0)\n",
"Collecting timm\n",
" Downloading timm-0.5.4-py3-none-any.whl (431 kB)\n",
"\u001b[K |████████████████████████████████| 431 kB 48.8 MB/s \n",
"\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from mmselfsup==0.7.1) (4.63.0)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmselfsup==0.7.1) (3.0.7)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmselfsup==0.7.1) (1.4.0)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmselfsup==0.7.1) (0.11.0)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->mmselfsup==0.7.1) (2.8.2)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib->mmselfsup==0.7.1) (3.10.0.2)\n",
"Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (from sklearn->mmselfsup==0.7.1) (1.0.2)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->sklearn->mmselfsup==0.7.1) (3.1.0)\n",
"Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->sklearn->mmselfsup==0.7.1) (1.1.0)\n",
"Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (0.6.1)\n",
"Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (1.0.1)\n",
"Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (0.37.1)\n",
"Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (57.4.0)\n",
"Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (2.23.0)\n",
"Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (1.0.0)\n",
"Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (1.35.0)\n",
"Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (1.44.0)\n",
"Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (0.4.6)\n",
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (3.3.6)\n",
"Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (1.8.1)\n",
"Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard->mmselfsup==0.7.1) (3.17.3)\n",
"Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->mmselfsup==0.7.1) (4.8)\n",
"Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->mmselfsup==0.7.1) (4.2.4)\n",
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<3,>=1.6.3->tensorboard->mmselfsup==0.7.1) (0.2.8)\n",
"Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmselfsup==0.7.1) (1.3.1)\n",
"Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard->mmselfsup==0.7.1) (4.11.3)\n",
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->mmselfsup==0.7.1) (3.7.0)\n",
"Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->mmselfsup==0.7.1) (0.4.8)\n",
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmselfsup==0.7.1) (1.24.3)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmselfsup==0.7.1) (2021.10.8)\n",
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmselfsup==0.7.1) (2.10)\n",
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard->mmselfsup==0.7.1) (3.0.4)\n",
"Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->mmselfsup==0.7.1) (3.2.0)\n",
"Requirement already satisfied: torch>=1.4 in /usr/local/lib/python3.7/dist-packages (from timm->mmselfsup==0.7.1) (1.10.0+cu111)\n",
"Requirement already satisfied: torchvision in /usr/local/lib/python3.7/dist-packages (from timm->mmselfsup==0.7.1) (0.11.1+cu111)\n",
"Requirement already satisfied: pillow!=8.3.0,>=5.3.0 in /usr/local/lib/python3.7/dist-packages (from torchvision->timm->mmselfsup==0.7.1) (7.1.2)\n",
"Installing collected packages: timm, mmcls, mmselfsup\n",
" Running setup.py develop for mmselfsup\n",
"Successfully installed mmcls-0.20.1 mmselfsup-0.7.1 timm-0.5.4\n"
]
}
],
"source": [
"# Clone MMSelfSup repository\n",
"!git clone https://github.com/open-mmlab/mmselfsup.git\n",
"%cd mmselfsup/\n",
"\n",
"# Install MMSelfSup from source\n",
"!pip install -e . "
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "53cda7d3",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "53cda7d3",
"outputId": "9e039eb8-24af-4b11-87c5-fd15d3195eee"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.7.1\n"
]
}
],
"source": [
"# Check MMSelfSup installation\n",
"import mmselfsup\n",
"print(mmselfsup.__version__)"
]
},
{
"cell_type": "markdown",
"id": "d36ec528",
"metadata": {
"id": "d36ec528"
},
"source": [
"## Example to start a self-supervised task\n",
"\n",
"Before you start training, you need to prepare your dataset, please check [prepare_data.md](https://github.com/open-mmlab/mmselfsup/blob/master/docs/en/prepare_data.md) file carefully.\n",
"\n",
"**Note**: As we follow the original algorithms to implement our codes, so many algorithms are supposed to run on distributed mode, they are not supported on 1 GPU training officially. You can check it [here](https://github.com/open-mmlab/mmselfsup/blob/master/tools/train.py#L120).\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "4fCR3h5nn26l",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "4fCR3h5nn26l",
"outputId": "7dc71982-7177-4a11-fda7-ae0e99e4bc89"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/content/mmselfsup\n"
]
}
],
"source": [
"!pwd"
]
},
{
"cell_type": "markdown",
"id": "i-7LXl36VV--",
"metadata": {
"id": "i-7LXl36VV--"
},
"source": [
"Here we provide a example and download a small dataset to display the demo."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "VDM0ZHHKUZNP",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "VDM0ZHHKUZNP",
"outputId": "c9f13fac-4e23-4bc8-fff1-3244bc1f2956"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2022-03-25 05:21:14-- https://download.openmmlab.com/mmselfsup/data/imagenet_examples.zip\n",
"Resolving download.openmmlab.com (download.openmmlab.com)... 47.75.20.18\n",
"Connecting to download.openmmlab.com (download.openmmlab.com)|47.75.20.18|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 155496559 (148M) [application/zip]\n",
"Saving to: imagenet_examples.zip\n",
"\n",
"imagenet_examples.z 100%[===================>] 148.29M 14.2MB/s in 12s \n",
"\n",
"2022-03-25 05:21:26 (12.5 MB/s) - imagenet_examples.zip saved [155496559/155496559]\n",
"\n"
]
}
],
"source": [
"!mkdir data\n",
"!wget https://download.openmmlab.com/mmselfsup/data/imagenet_examples.zip\n",
"!unzip -q imagenet_examples.zip -d ./data/"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "tOGY00U4WPGC",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "tOGY00U4WPGC",
"outputId": "5a54a9aa-5c4f-4ebf-d636-4b4e8af68908"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reading package lists... Done\n",
"Building dependency tree \n",
"Reading state information... Done\n",
"The following NEW packages will be installed:\n",
" tree\n",
"0 upgraded, 1 newly installed, 0 to remove and 39 not upgraded.\n",
"Need to get 40.7 kB of archives.\n",
"After this operation, 105 kB of additional disk space will be used.\n",
"Get:1 http://archive.ubuntu.com/ubuntu bionic/universe amd64 tree amd64 1.7.0-5 [40.7 kB]\n",
"Fetched 40.7 kB in 1s (45.2 kB/s)\n",
"Selecting previously unselected package tree.\n",
"(Reading database ... 156210 files and directories currently installed.)\n",
"Preparing to unpack .../tree_1.7.0-5_amd64.deb ...\n",
"Unpacking tree (1.7.0-5) ...\n",
"Setting up tree (1.7.0-5) ...\n",
"Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n",
"./data\n",
"└── imagenet\n",
" ├── meta\n",
" └── train\n",
" └── n01440764\n",
"\n",
"4 directories\n"
]
}
],
"source": [
"# Check data directory\n",
"!apt-get install tree\n",
"!tree -d ./data"
]
},
{
"cell_type": "markdown",
"id": "SF5vqi1nmqGh",
"metadata": {
"id": "SF5vqi1nmqGh"
},
"source": [
"### Create a new config file\n",
"To reuse the common parts of different config files, we support inheriting multiple base config files. For example, to train `relative_loc` algorithm, the new config file can create the model's basic structure by inheriting `configs/_base_/models/relative-loc.py`."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "h2y2bh9DnE8b",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "h2y2bh9DnE8b",
"outputId": "b2a0a019-c5aa-420e-ad6c-4a8c6c3c3c58"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Writing configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab.py\n"
]
}
],
"source": [
"%%writefile configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab.py\n",
"_base_ = [\n",
" '../_base_/models/relative-loc.py',\n",
" '../_base_/datasets/imagenet_relative-loc.py',\n",
" '../_base_/schedules/sgd_steplr-200e_in1k.py',\n",
" '../_base_/default_runtime.py',\n",
"]\n",
"\n",
"log_config = dict(interval=10)\n",
"\n",
"# optimizer\n",
"optimizer = dict(\n",
" type='SGD',\n",
" lr=0.2,\n",
" weight_decay=1e-4,\n",
" momentum=0.9,\n",
" paramwise_options={\n",
" '\\\\Aneck.': dict(weight_decay=5e-4),\n",
" '\\\\Ahead.': dict(weight_decay=5e-4)\n",
" })\n",
"\n",
"# learning policy\n",
"lr_config = dict(policy='step', step=[1])\n",
"\n",
"# runtime settings\n",
"runner = dict(type='EpochBasedRunner', max_epochs=70)\n",
"# the max_keep_ckpts controls the max number of ckpt file in your work_dirs\n",
"# if it is 3, when CheckpointHook (in mmcv) saves the 4th ckpt\n",
"# it will remove the oldest one to keep the number of total ckpts as 3\n",
"checkpoint_config = dict(interval=1, max_keep_ckpts=3)\n"
]
},
{
"cell_type": "markdown",
"id": "ahdJBk_2xXbQ",
"metadata": {
"id": "ahdJBk_2xXbQ"
},
"source": [
"### Read the config file and modify config\n",
"\n",
"We can modify the loaded config file."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "9zlGPEAAx4Z5",
"metadata": {
"id": "9zlGPEAAx4Z5"
},
"outputs": [],
"source": [
"# Load the basic config file\n",
"from mmcv import Config\n",
"cfg = Config.fromfile('configs/selfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab.py')\n",
"\n",
"# Specify the data settings\n",
"cfg.data.samples_per_gpu = 64\n",
"cfg.data.workers_per_gpu = 2\n",
"\n",
"# Modify the path and meta files of validation dataset\n",
"cfg.data.val.data_source.data_prefix = 'data/imagenet/train'\n",
"cfg.data.val.data_source.ann_file = 'data/imagenet/meta/train.txt'\n",
"\n",
"# Specify the optimizer\n",
"cfg.optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001)\n",
"cfg.optimizer_config = dict(grad_clip=None)\n",
"\n",
"# Specify the learning rate scheduler\n",
"cfg.lr_config = dict(policy='step', step=[1])\n",
"\n",
"# Modify runtime setting\n",
"cfg.runner = dict(type='EpochBasedRunner', max_epochs=2)\n",
"\n",
"# Specify the work directory\n",
"cfg.work_dir = './work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab'\n",
"\n",
"# Output logs for every 10 iterations\n",
"cfg.log_config.interval = 10\n",
"\n",
"# Set the random seed and enable the deterministic option of cuDNN\n",
"# to keep the results' reproducible.\n",
"from mmselfsup.apis import set_random_seed\n",
"cfg.seed = 0\n",
"set_random_seed(0, deterministic=True)\n",
"\n",
"cfg.gpu_ids = range(1)"
]
},
{
"cell_type": "markdown",
"id": "e2j-EtlHukMu",
"metadata": {
"id": "e2j-EtlHukMu"
},
"source": [
"### Start self-supervised pre-train task"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "ufvDKC5Wvmni",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ufvDKC5Wvmni",
"outputId": "2dafe4cf-01f7-4864-f6c7-bb37c0e6ef3d"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.7/dist-packages/mmcv/utils/registry.py:255: DeprecationWarning: The old API of register_module(module, force=False) is deprecated and will be removed, please use the new API register_module(name=None, force=False, module=None) instead.\n",
" DeprecationWarning)\n",
"/usr/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
" return f(*args, **kwds)\n",
"/usr/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n",
" return f(*args, **kwds)\n",
"/usr/local/lib/python3.7/dist-packages/scipy/special/orthogonal.py:81: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.\n",
"Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
" from numpy import (exp, inf, pi, sqrt, floor, sin, cos, around, int,\n",
"2022-03-25 05:22:25,799 - mmcv - INFO - initialize ResNet with init_cfg [{'type': 'Kaiming', 'layer': 'Conv2d'}, {'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm', 'GroupNorm']}]\n",
"2022-03-25 05:22:26,090 - mmcv - INFO - initialize RelativeLocNeck with init_cfg [{'type': 'Normal', 'std': 0.01, 'layer': 'Linear'}, {'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm', 'GroupNorm']}]\n",
"2022-03-25 05:22:26,255 - mmcv - INFO - initialize ClsHead with init_cfg [{'type': 'Normal', 'std': 0.005, 'layer': 'Linear'}, {'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm', 'GroupNorm']}]\n",
"2022-03-25 05:22:26,258 - mmcv - INFO - \n",
"backbone.conv1.weight - torch.Size([64, 3, 7, 7]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,262 - mmcv - INFO - \n",
"backbone.bn1.weight - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,266 - mmcv - INFO - \n",
"backbone.bn1.bias - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,269 - mmcv - INFO - \n",
"backbone.layer1.0.conv1.weight - torch.Size([64, 64, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,276 - mmcv - INFO - \n",
"backbone.layer1.0.bn1.weight - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,278 - mmcv - INFO - \n",
"backbone.layer1.0.bn1.bias - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,280 - mmcv - INFO - \n",
"backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,282 - mmcv - INFO - \n",
"backbone.layer1.0.bn2.weight - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,284 - mmcv - INFO - \n",
"backbone.layer1.0.bn2.bias - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,286 - mmcv - INFO - \n",
"backbone.layer1.0.conv3.weight - torch.Size([256, 64, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,288 - mmcv - INFO - \n",
"backbone.layer1.0.bn3.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,290 - mmcv - INFO - \n",
"backbone.layer1.0.bn3.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,292 - mmcv - INFO - \n",
"backbone.layer1.0.downsample.0.weight - torch.Size([256, 64, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,294 - mmcv - INFO - \n",
"backbone.layer1.0.downsample.1.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,296 - mmcv - INFO - \n",
"backbone.layer1.0.downsample.1.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,298 - mmcv - INFO - \n",
"backbone.layer1.1.conv1.weight - torch.Size([64, 256, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,300 - mmcv - INFO - \n",
"backbone.layer1.1.bn1.weight - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,301 - mmcv - INFO - \n",
"backbone.layer1.1.bn1.bias - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,304 - mmcv - INFO - \n",
"backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,305 - mmcv - INFO - \n",
"backbone.layer1.1.bn2.weight - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,312 - mmcv - INFO - \n",
"backbone.layer1.1.bn2.bias - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,316 - mmcv - INFO - \n",
"backbone.layer1.1.conv3.weight - torch.Size([256, 64, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,319 - mmcv - INFO - \n",
"backbone.layer1.1.bn3.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,322 - mmcv - INFO - \n",
"backbone.layer1.1.bn3.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,325 - mmcv - INFO - \n",
"backbone.layer1.2.conv1.weight - torch.Size([64, 256, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,327 - mmcv - INFO - \n",
"backbone.layer1.2.bn1.weight - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,329 - mmcv - INFO - \n",
"backbone.layer1.2.bn1.bias - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,330 - mmcv - INFO - \n",
"backbone.layer1.2.conv2.weight - torch.Size([64, 64, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,332 - mmcv - INFO - \n",
"backbone.layer1.2.bn2.weight - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,334 - mmcv - INFO - \n",
"backbone.layer1.2.bn2.bias - torch.Size([64]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,336 - mmcv - INFO - \n",
"backbone.layer1.2.conv3.weight - torch.Size([256, 64, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,337 - mmcv - INFO - \n",
"backbone.layer1.2.bn3.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,342 - mmcv - INFO - \n",
"backbone.layer1.2.bn3.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,346 - mmcv - INFO - \n",
"backbone.layer2.0.conv1.weight - torch.Size([128, 256, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,347 - mmcv - INFO - \n",
"backbone.layer2.0.bn1.weight - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,349 - mmcv - INFO - \n",
"backbone.layer2.0.bn1.bias - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,350 - mmcv - INFO - \n",
"backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,352 - mmcv - INFO - \n",
"backbone.layer2.0.bn2.weight - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,356 - mmcv - INFO - \n",
"backbone.layer2.0.bn2.bias - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,357 - mmcv - INFO - \n",
"backbone.layer2.0.conv3.weight - torch.Size([512, 128, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,361 - mmcv - INFO - \n",
"backbone.layer2.0.bn3.weight - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,364 - mmcv - INFO - \n",
"backbone.layer2.0.bn3.bias - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,366 - mmcv - INFO - \n",
"backbone.layer2.0.downsample.0.weight - torch.Size([512, 256, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,367 - mmcv - INFO - \n",
"backbone.layer2.0.downsample.1.weight - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,370 - mmcv - INFO - \n",
"backbone.layer2.0.downsample.1.bias - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,374 - mmcv - INFO - \n",
"backbone.layer2.1.conv1.weight - torch.Size([128, 512, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,378 - mmcv - INFO - \n",
"backbone.layer2.1.bn1.weight - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,380 - mmcv - INFO - \n",
"backbone.layer2.1.bn1.bias - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,384 - mmcv - INFO - \n",
"backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,386 - mmcv - INFO - \n",
"backbone.layer2.1.bn2.weight - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,387 - mmcv - INFO - \n",
"backbone.layer2.1.bn2.bias - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,393 - mmcv - INFO - \n",
"backbone.layer2.1.conv3.weight - torch.Size([512, 128, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,395 - mmcv - INFO - \n",
"backbone.layer2.1.bn3.weight - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,397 - mmcv - INFO - \n",
"backbone.layer2.1.bn3.bias - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,399 - mmcv - INFO - \n",
"backbone.layer2.2.conv1.weight - torch.Size([128, 512, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,401 - mmcv - INFO - \n",
"backbone.layer2.2.bn1.weight - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,403 - mmcv - INFO - \n",
"backbone.layer2.2.bn1.bias - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,404 - mmcv - INFO - \n",
"backbone.layer2.2.conv2.weight - torch.Size([128, 128, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,406 - mmcv - INFO - \n",
"backbone.layer2.2.bn2.weight - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,407 - mmcv - INFO - \n",
"backbone.layer2.2.bn2.bias - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,409 - mmcv - INFO - \n",
"backbone.layer2.2.conv3.weight - torch.Size([512, 128, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,414 - mmcv - INFO - \n",
"backbone.layer2.2.bn3.weight - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,415 - mmcv - INFO - \n",
"backbone.layer2.2.bn3.bias - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,418 - mmcv - INFO - \n",
"backbone.layer2.3.conv1.weight - torch.Size([128, 512, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,419 - mmcv - INFO - \n",
"backbone.layer2.3.bn1.weight - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,421 - mmcv - INFO - \n",
"backbone.layer2.3.bn1.bias - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,422 - mmcv - INFO - \n",
"backbone.layer2.3.conv2.weight - torch.Size([128, 128, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,424 - mmcv - INFO - \n",
"backbone.layer2.3.bn2.weight - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,426 - mmcv - INFO - \n",
"backbone.layer2.3.bn2.bias - torch.Size([128]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,428 - mmcv - INFO - \n",
"backbone.layer2.3.conv3.weight - torch.Size([512, 128, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,430 - mmcv - INFO - \n",
"backbone.layer2.3.bn3.weight - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,432 - mmcv - INFO - \n",
"backbone.layer2.3.bn3.bias - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,433 - mmcv - INFO - \n",
"backbone.layer3.0.conv1.weight - torch.Size([256, 512, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,435 - mmcv - INFO - \n",
"backbone.layer3.0.bn1.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,437 - mmcv - INFO - \n",
"backbone.layer3.0.bn1.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,439 - mmcv - INFO - \n",
"backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,441 - mmcv - INFO - \n",
"backbone.layer3.0.bn2.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,442 - mmcv - INFO - \n",
"backbone.layer3.0.bn2.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,444 - mmcv - INFO - \n",
"backbone.layer3.0.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,446 - mmcv - INFO - \n",
"backbone.layer3.0.bn3.weight - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,448 - mmcv - INFO - \n",
"backbone.layer3.0.bn3.bias - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,450 - mmcv - INFO - \n",
"backbone.layer3.0.downsample.0.weight - torch.Size([1024, 512, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,451 - mmcv - INFO - \n",
"backbone.layer3.0.downsample.1.weight - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,453 - mmcv - INFO - \n",
"backbone.layer3.0.downsample.1.bias - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,455 - mmcv - INFO - \n",
"backbone.layer3.1.conv1.weight - torch.Size([256, 1024, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,457 - mmcv - INFO - \n",
"backbone.layer3.1.bn1.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,458 - mmcv - INFO - \n",
"backbone.layer3.1.bn1.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,460 - mmcv - INFO - \n",
"backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,462 - mmcv - INFO - \n",
"backbone.layer3.1.bn2.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,463 - mmcv - INFO - \n",
"backbone.layer3.1.bn2.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,465 - mmcv - INFO - \n",
"backbone.layer3.1.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,467 - mmcv - INFO - \n",
"backbone.layer3.1.bn3.weight - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,469 - mmcv - INFO - \n",
"backbone.layer3.1.bn3.bias - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,471 - mmcv - INFO - \n",
"backbone.layer3.2.conv1.weight - torch.Size([256, 1024, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,473 - mmcv - INFO - \n",
"backbone.layer3.2.bn1.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,475 - mmcv - INFO - \n",
"backbone.layer3.2.bn1.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,477 - mmcv - INFO - \n",
"backbone.layer3.2.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,478 - mmcv - INFO - \n",
"backbone.layer3.2.bn2.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,480 - mmcv - INFO - \n",
"backbone.layer3.2.bn2.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,482 - mmcv - INFO - \n",
"backbone.layer3.2.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,483 - mmcv - INFO - \n",
"backbone.layer3.2.bn3.weight - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,485 - mmcv - INFO - \n",
"backbone.layer3.2.bn3.bias - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,487 - mmcv - INFO - \n",
"backbone.layer3.3.conv1.weight - torch.Size([256, 1024, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,489 - mmcv - INFO - \n",
"backbone.layer3.3.bn1.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,491 - mmcv - INFO - \n",
"backbone.layer3.3.bn1.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,493 - mmcv - INFO - \n",
"backbone.layer3.3.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,494 - mmcv - INFO - \n",
"backbone.layer3.3.bn2.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,496 - mmcv - INFO - \n",
"backbone.layer3.3.bn2.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,498 - mmcv - INFO - \n",
"backbone.layer3.3.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,500 - mmcv - INFO - \n",
"backbone.layer3.3.bn3.weight - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,501 - mmcv - INFO - \n",
"backbone.layer3.3.bn3.bias - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,503 - mmcv - INFO - \n",
"backbone.layer3.4.conv1.weight - torch.Size([256, 1024, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,505 - mmcv - INFO - \n",
"backbone.layer3.4.bn1.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,507 - mmcv - INFO - \n",
"backbone.layer3.4.bn1.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,509 - mmcv - INFO - \n",
"backbone.layer3.4.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,511 - mmcv - INFO - \n",
"backbone.layer3.4.bn2.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,512 - mmcv - INFO - \n",
"backbone.layer3.4.bn2.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,514 - mmcv - INFO - \n",
"backbone.layer3.4.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,516 - mmcv - INFO - \n",
"backbone.layer3.4.bn3.weight - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,518 - mmcv - INFO - \n",
"backbone.layer3.4.bn3.bias - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,520 - mmcv - INFO - \n",
"backbone.layer3.5.conv1.weight - torch.Size([256, 1024, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,530 - mmcv - INFO - \n",
"backbone.layer3.5.bn1.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,531 - mmcv - INFO - \n",
"backbone.layer3.5.bn1.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,533 - mmcv - INFO - \n",
"backbone.layer3.5.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,535 - mmcv - INFO - \n",
"backbone.layer3.5.bn2.weight - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,537 - mmcv - INFO - \n",
"backbone.layer3.5.bn2.bias - torch.Size([256]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,538 - mmcv - INFO - \n",
"backbone.layer3.5.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,540 - mmcv - INFO - \n",
"backbone.layer3.5.bn3.weight - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,542 - mmcv - INFO - \n",
"backbone.layer3.5.bn3.bias - torch.Size([1024]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,543 - mmcv - INFO - \n",
"backbone.layer4.0.conv1.weight - torch.Size([512, 1024, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,545 - mmcv - INFO - \n",
"backbone.layer4.0.bn1.weight - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,547 - mmcv - INFO - \n",
"backbone.layer4.0.bn1.bias - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,548 - mmcv - INFO - \n",
"backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,550 - mmcv - INFO - \n",
"backbone.layer4.0.bn2.weight - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,551 - mmcv - INFO - \n",
"backbone.layer4.0.bn2.bias - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,553 - mmcv - INFO - \n",
"backbone.layer4.0.conv3.weight - torch.Size([2048, 512, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,554 - mmcv - INFO - \n",
"backbone.layer4.0.bn3.weight - torch.Size([2048]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,556 - mmcv - INFO - \n",
"backbone.layer4.0.bn3.bias - torch.Size([2048]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,558 - mmcv - INFO - \n",
"backbone.layer4.0.downsample.0.weight - torch.Size([2048, 1024, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,559 - mmcv - INFO - \n",
"backbone.layer4.0.downsample.1.weight - torch.Size([2048]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,561 - mmcv - INFO - \n",
"backbone.layer4.0.downsample.1.bias - torch.Size([2048]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,563 - mmcv - INFO - \n",
"backbone.layer4.1.conv1.weight - torch.Size([512, 2048, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,565 - mmcv - INFO - \n",
"backbone.layer4.1.bn1.weight - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,580 - mmcv - INFO - \n",
"backbone.layer4.1.bn1.bias - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,584 - mmcv - INFO - \n",
"backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,586 - mmcv - INFO - \n",
"backbone.layer4.1.bn2.weight - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,588 - mmcv - INFO - \n",
"backbone.layer4.1.bn2.bias - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,589 - mmcv - INFO - \n",
"backbone.layer4.1.conv3.weight - torch.Size([2048, 512, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,591 - mmcv - INFO - \n",
"backbone.layer4.1.bn3.weight - torch.Size([2048]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,595 - mmcv - INFO - \n",
"backbone.layer4.1.bn3.bias - torch.Size([2048]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,596 - mmcv - INFO - \n",
"backbone.layer4.2.conv1.weight - torch.Size([512, 2048, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,600 - mmcv - INFO - \n",
"backbone.layer4.2.bn1.weight - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,601 - mmcv - INFO - \n",
"backbone.layer4.2.bn1.bias - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,604 - mmcv - INFO - \n",
"backbone.layer4.2.conv2.weight - torch.Size([512, 512, 3, 3]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,607 - mmcv - INFO - \n",
"backbone.layer4.2.bn2.weight - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,609 - mmcv - INFO - \n",
"backbone.layer4.2.bn2.bias - torch.Size([512]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,612 - mmcv - INFO - \n",
"backbone.layer4.2.conv3.weight - torch.Size([2048, 512, 1, 1]): \n",
"KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 \n",
" \n",
"2022-03-25 05:22:26,614 - mmcv - INFO - \n",
"backbone.layer4.2.bn3.weight - torch.Size([2048]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,616 - mmcv - INFO - \n",
"backbone.layer4.2.bn3.bias - torch.Size([2048]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,619 - mmcv - INFO - \n",
"neck.fc.weight - torch.Size([4096, 4096]): \n",
"NormalInit: mean=0, std=0.01, bias=0 \n",
" \n",
"2022-03-25 05:22:26,621 - mmcv - INFO - \n",
"neck.fc.bias - torch.Size([4096]): \n",
"NormalInit: mean=0, std=0.01, bias=0 \n",
" \n",
"2022-03-25 05:22:26,623 - mmcv - INFO - \n",
"neck.bn.weight - torch.Size([4096]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,625 - mmcv - INFO - \n",
"neck.bn.bias - torch.Size([4096]): \n",
"The value is the same before and after calling `init_weights` of RelativeLoc \n",
" \n",
"2022-03-25 05:22:26,628 - mmcv - INFO - \n",
"head.fc_cls.weight - torch.Size([8, 4096]): \n",
"NormalInit: mean=0, std=0.005, bias=0 \n",
" \n",
"2022-03-25 05:22:26,630 - mmcv - INFO - \n",
"head.fc_cls.bias - torch.Size([8]): \n",
"NormalInit: mean=0, std=0.005, bias=0 \n",
" \n",
"/content/mmselfsup/mmselfsup/datasets/base.py:29: UserWarning: The dataset part will be refactored, it will soon support `dict` in pipelines to save more information, the same as the pipeline in `MMDet`.\n",
" warnings.warn('The dataset part will be refactored, it will soon '\n",
"2022-03-25 05:22:36,359 - mmselfsup - INFO - Start running, host: root@f8465e2b77d5, work_dir: /content/mmselfsup/work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab\n",
"2022-03-25 05:22:36,362 - mmselfsup - INFO - Hooks will be executed in the following order:\n",
"before_run:\n",
"(VERY_HIGH ) StepLrUpdaterHook \n",
"(NORMAL ) CheckpointHook \n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"before_train_epoch:\n",
"(VERY_HIGH ) StepLrUpdaterHook \n",
"(LOW ) IterTimerHook \n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"before_train_iter:\n",
"(VERY_HIGH ) StepLrUpdaterHook \n",
"(LOW ) IterTimerHook \n",
" -------------------- \n",
"after_train_iter:\n",
"(ABOVE_NORMAL) OptimizerHook \n",
"(NORMAL ) CheckpointHook \n",
"(LOW ) IterTimerHook \n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"after_train_epoch:\n",
"(NORMAL ) CheckpointHook \n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"before_val_epoch:\n",
"(LOW ) IterTimerHook \n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"before_val_iter:\n",
"(LOW ) IterTimerHook \n",
" -------------------- \n",
"after_val_iter:\n",
"(LOW ) IterTimerHook \n",
" -------------------- \n",
"after_val_epoch:\n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"after_run:\n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"2022-03-25 05:22:36,366 - mmselfsup - INFO - workflow: [('train', 1)], max: 2 epochs\n",
"2022-03-25 05:22:36,369 - mmselfsup - INFO - Checkpoints will be saved to /content/mmselfsup/work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab by HardDiskBackend.\n",
"2022-03-25 05:23:04,342 - mmselfsup - INFO - Epoch [1][10/21]\tlr: 5.000e-03, eta: 0:01:27, time: 2.738, data_time: 0.402, memory: 7428, loss: 2.1114, acc: 12.4805\n",
"2022-03-25 05:23:28,178 - mmselfsup - INFO - Epoch [1][20/21]\tlr: 5.000e-03, eta: 0:00:56, time: 2.383, data_time: 0.060, memory: 7428, loss: 2.1013, acc: 14.0430\n",
"2022-03-25 05:23:28,809 - mmselfsup - INFO - Saving checkpoint at 1 epochs\n",
"2022-03-25 05:23:58,608 - mmselfsup - INFO - Epoch [2][10/21]\tlr: 5.000e-04, eta: 0:00:27, time: 2.730, data_time: 0.380, memory: 7428, loss: 2.0941, acc: 14.8633\n",
"2022-03-25 05:24:22,557 - mmselfsup - INFO - Epoch [2][20/21]\tlr: 5.000e-04, eta: 0:00:02, time: 2.395, data_time: 0.061, memory: 7428, loss: 2.0829, acc: 14.0039\n",
"2022-03-25 05:24:23,182 - mmselfsup - INFO - Saving checkpoint at 2 epochs\n"
]
}
],
"source": [
"import time\n",
"import mmcv\n",
"import os.path as osp\n",
"\n",
"from mmselfsup.datasets import build_dataset\n",
"from mmselfsup.models import build_algorithm\n",
"from mmselfsup.apis import train_model\n",
"\n",
"# Create the work directory\n",
"mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))\n",
"\n",
"# Build the algorithm\n",
"model = build_algorithm(cfg.model)\n",
"model.init_weights()\n",
"\n",
"# Build the dataset\n",
"datasets = [build_dataset(cfg.data.train)]\n",
"\n",
"# Start pre-train\n",
"train_model(\n",
" model,\n",
" datasets,\n",
" cfg,\n",
" distributed=False,\n",
" timestamp=time.strftime('%Y%m%d_%H%M%S', time.localtime()),\n",
" meta=dict())"
]
},
{
"cell_type": "markdown",
"id": "4a78a656",
"metadata": {
"id": "4a78a656"
},
"source": [
"## Example to start a downstream task\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "GH7JAKYifrsJ",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GH7JAKYifrsJ",
"outputId": "972c3ce0-9c68-4213-8bb3-ab877b9cccc6"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/content/mmselfsup\n"
]
}
],
"source": [
"!pwd"
]
},
{
"cell_type": "markdown",
"id": "Qy4OauSGomPv",
"metadata": {
"id": "Qy4OauSGomPv"
},
"source": [
"### Extract backbone weights from pre-train model"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "QfFjDyl-ow5M",
"metadata": {
"id": "QfFjDyl-ow5M"
},
"outputs": [],
"source": [
"!python tools/model_converters/extract_backbone_weights.py \\\n",
" work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/epoch_2.pth \\\n",
" work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth"
]
},
{
"cell_type": "markdown",
"id": "zlrOaDo6tQtr",
"metadata": {
"id": "zlrOaDo6tQtr"
},
"source": [
"### Prepare config file\n",
"\n",
"Here we create a new config file for demo dataset, actually we provided various config files in directory `configs/benchmarks`."
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "tYVW1halrrtJ",
"metadata": {
"id": "tYVW1halrrtJ"
},
"outputs": [],
"source": [
"# Load the basic config file\n",
"from mmcv import Config\n",
Bump version to v0.9.0 (#299) * [Feature]: MAE pre-training with fp16 (#271) * [Feature]: MAE pre-training with fp16 * [Fix]: Fix lint * [Fix]: Fix SimMIM config link, and add SimMIM to model_zoo (#272) * [Fix]: Fix link error * [Fix]: Add SimMIM to model zoo * [Fix]: Fix lint * [Fix] fix 'no init_cfg' error for pre-trained model backbones (#256) * [UT] add unit test for apis (#276) * [UT] add unit test for apis * ignore pytest log * [Feature] Add extra dataloader settings in configs. (#264) * [Feature] support to set validation samples per gpu independently * set default to be cfg.data.samples_per_gpu * modify the tools/test.py * using 'train_dataloader', 'val_dataloader', 'test_dataloader' for specific settings * test 'evaluation' branch * [Fix]: Change imgs_per_gpu to samples_per_gpu MAE (#278) * [Feature]: Add SimMIM 192 pt 224 ft (#280) * [Feature]: Add SimMIM 192 pt 224 ft * [Feature]: Add simmim 192 pt 224 ft to readme * [Fix] fix key error bug when registering custom hooks (#273) * [UT] remove pytorch1.5 test (#288) * [Benchmark] rename linear probing config file names (#281) * [Benchmark] rename linear probing config file names * update config links * Avoid GPU memory leak with prefetch dataloader (#277) * [Feature] barlowtwins (#207) * [Fix]: Fix mmcls upgrade bug (#235) * [Feature]: Add multi machine dist_train (#232) * [Feature]: Add multi machine dist_train * [Fix]: Change bash to sh * [Fix]: Fix missing sh suffix * [Refactor]: Change bash to sh * [Refactor] Add unit test (#234) * [Refactor] add unit test * update workflow * update * [Fix] fix lint * update test * refactor moco and densecl unit test * fix lint * add unit test * update unit test * remove modification * [Feature]: Add MAE metafile (#238) * [Feature]: Add MAE metafile * [Fix]: Fix lint * [Fix]: Change LARS to AdamW in the metafile of MAE * Add barlowtwins * Add unit test for barlowtwins * Adjust training params * add decorator to pass CI * adjust params * Add barlowtwins * Add unit test for barlowtwins * Adjust training params * add decorator to pass CI * adjust params * add barlowtwins configs * revise LatentCrossCorrelationHead * modify ut to save memory * add metafile * add barlowtwins results to model zoo * add barlow twins to homepage * fix batch size bug * add algorithm readme * add type hints * reorganize the model zoo * remove one config * recover the config * add missing docstring * revise barlowtwins * reorganize coco and voc benchmark * add barlowtwins to index.rst * revise docstring Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com> Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> * [Fix] fix --local-rank (#290) * [UT] reduce memory usage while runing unit test (#291) * [Feature]: CAE Supported (#284) * [Feature]: Add mc * [Feature]: Add dataset of CAE * [Feature]: Init version of CAE * [Feature]: Add mc * [Fix]: Change beta to (0.9, 0.999) * [Fix]: New feature * [Fix]: Decouple the qkv bias * [Feature]: Decouple qkv bias in MultiheadAttention * [Feature]: New mask generator * [Fix]: Fix TransformEncoderLayer bug * [Feature]: Add MAE CAE linear prob * [Fix]: Fix config * [Fix]: Delete redundant mc * [Fix]: Add init value in mim cls vit * [Fix]: Fix cae ft config * [Fix]: Delete repeated init_values * [Fix]: Change bs from 64 to 128 in CAE ft * [Fix]: Add mc in cae pt * [Fix]: Fix momemtum update bug * [Fix]: Add no weight_decay for gamma * [Feature]: Add mc for cae pt * [Fix]: Delete mc * [Fix]: Delete redundant files * [Fix]: Fix lint * [Feature]: Add docstring to algo, backbone, neck and head * [Fix]: Fix lint * [Fix]: network * [Feature]: Add docstrings for network blocks * [Feature]: Add docstring to ToTensor * [Feature]: Add docstring to transoform * [Fix]: Add type hint to BEiTMaskGenerator * [Fix]: Fix lint * [Fix]: Add copyright to dalle_e * [Fix]: Fix BlockwiseMaskGenerator * [Feature]: Add UT for CAE * [Fix]: Fix dalle state_dict path not existed bug * [Fix]: Delete file_client_args related code * [Fix]: Remove redundant code * [Refactor]: Add fp16 to the name of cae pre-train config * [Refactor]: Use FFN from mmcv * [Refactor]: Change network_blocks to trasformer_blocks * [Fix]: Fix mask generator name bug * [Fix]: cae pre-train config bug * [Fix]: Fix docstring grammar * [Fix]: Fix mc related code * [Fix]: Add object parent to transform * [Fix]: Delete unnecessary modification * [Fix]: Change blockwisemask generator to simmim mask generator * [Refactor]: Change cae mae pretrain vit to cae mae vit * [Refactor]: Change lamb to lambd * [Fix]: Remove blank line * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Delete modification to swin * [Fix]: Fix lint * [Feature]: Add README and metafile * [Feature]: Update index.rst * [Fix]: Update model_zoo * [Fix]: Change MAE to CAE in algorithm * [Fix]: Change SimMIMMaskGenerator to CAEMaskGenerator * [Fix]: Fix model zoo * [Fix]: Change to dalle_encoder * [Feature]: Add download link for dalle * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Update metafile * [Fix]: Change b to base * [Feature]: Add dalle download link in warning * [Fix] add arxiv link in readme Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> * [Enhance] update SimCLR models and results (#295) * [Enhance] update simclr models and results * [Fix] revise comments to indicate settings * Update version (#296) * [Feature]: Update to 0.9.0 * [Feature]: Add version constrain for mmcls * [Fix]: Fix bug * [Fix]: Fix version bug * [Feature]: Update version in install.md * update changelog * update readme * [Fix] fix uppercase * [Fix] fix uppercase * [Fix] fix uppercase * update version dependency * add cae to readme Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com> Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com> Co-authored-by: xcnick <xcnick0412@gmail.com> Co-authored-by: fangyixiao18 <fangyx18@hotmail.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com>
2022-04-29 20:01:30 +08:00
"benchmark_cfg = Config.fromfile('configs/benchmarks/classification/imagenet/resnet50_linear-8xb32-steplr-100e_in1k.py')\n",
Bump version to v0.8.0 (#269) * [Fix]: Fix mmcls upgrade bug (#235) * [Feature]: Add multi machine dist_train (#232) * [Feature]: Add multi machine dist_train * [Fix]: Change bash to sh * [Fix]: Fix missing sh suffix * [Refactor]: Change bash to sh * [Refactor] Add unit test (#234) * [Refactor] add unit test * update workflow * update * [Fix] fix lint * update test * refactor moco and densecl unit test * fix lint * add unit test * update unit test * remove modification * [Feature]: Add MAE metafile (#238) * [Feature]: Add MAE metafile * [Fix]: Fix lint * [Fix]: Change LARS to AdamW in the metafile of MAE * [Fix] fix codecov bug (#241) * [Fix] fix codecov bug * update comment * [Refactor] Using MMCls backbones (#233) * [Refactor] using backbones from MMCls * [Refactor] modify the unit test * [Fix] modify default setting of out_indices * [Docs] fix lint * [Refactor] modify super init * [Refactore] remove res_layer.py * using mmcv PatchEmbed * [Fix]: Fix outdated problem (#249) * [Fix]: Fix outdated problem * [Fix]: Update MoCov3 bibtex * [Fix]: Use abs path in README * [Fix]: Reformat MAE bibtex * [Fix]: Reformat MoCov3 bibtex * [Feature] Resume from the latest checkpoint automatically. (#245) * [Feature] Resume from the latest checkpoint automatically. * fix windows path problem * fix lint * add code reference * [Docs] add docstring for ResNet and ResNeXt (#252) * [Feature] support KNN benchmark (#243) * [Feature] support KNN benchmark * [Fix] add docstring and multi-machine testing * [Fix] fix lint * [Fix] change args format and check init_cfg * [Docs] add benchmark tutorial * [Docs] add benchmark results * [Feature]: SimMIM supported (#239) * [Feature]: SimMIM Pretrain * [Feature]: Add mix precision and 16x128 config * [Fix]: Fix config import bug * [Fix]: Fix config bug * [Feature]: Simim Finetune * [Fix]: Log every 100 * [Fix]: Fix eval problem * [Feature]: Add docstring for simmim * [Refactor]: Merge layer wise lr decay to Default constructor * [Fix]:Fix simmim evaluation bug * [Fix]: Change model to be compatible to latest version of mmcls * [Fix]: Fix lint * [Fix]: Rewrite forward_train for classification cls * [Feature]: Add UT * [Fix]: Fix lint * [Feature]: Add 32 gpus training for simmim ft * [Fix]: Rename mmcls classifier wrapper * [Fix]: Add docstring to SimMIMNeck * [Feature]: Generate docstring for the forward function of simmim encoder * [Fix]: Rewrite the class docstring for constructor * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Reformat config * [Fix]: Add img resolution * [Feature]: Add readme and metafile * [Fix]: Fix typo in README.md * [Fix]: Change BlackMaskGen to BlockwiseMaskGenerator * [Fix]: Change the name of SwinForSimMIM * [Fix]: Delete irrelevant files * [Feature]: Create extra transformerfinetuneconstructor * [Fix]: Fix lint * [Fix]: Update SimMIM README * [Fix]: Change SimMIMPretrainHead to SimMIMHead * [Fix]: Fix the docstring of ft constructor * [Fix]: Fix UT * [Fix]: Recover deletion Co-authored-by: Your <you@example.com> * [Fix] add seed to distributed sampler (#250) * [Fix] add seed to distributed sampler * fix lint * [Feature] Add ImageNet21k (#225) * solve memory leak by limited implementation * fix lint problem Co-authored-by: liming <liming.ai@bytedance.com> * [Refactor] change args format to '--a-b' (#253) * [Refactor] change args format to `--a-b` * modify tsne script * modify 'sh' files * modify getting_started.md * modify getting_started.md * [Fix] fix 'mkdir' error in prepare_voc07_cls.sh (#261) * [Fix] fix positional parameter error (#260) * [Fix] fix command errors in benchmarks tutorial (#263) * [Docs] add brief installation steps in README.md (#265) * [Docs] add colab tutorial (#247) * [Docs] add colab tutorial * fix lint * modify the colab tutorial, using API to train the model * modify the description * remove # * modify the command * [Docs] translate 6_benchmarks.md into Chinese (#262) * [Docs] translate 6_benchmarks.md into Chinese * Update 6_benchmarks.md change 基准 to 基准评测 * Update 6_benchmarks.md (1) Add Chinese translation of ‘1 folder for ImageNet nearest-neighbor classification task’ (2) 数据预准备 -> 数据准备 * [Docs] remove install scripts in README (#267) * [Docs] Update version information in dev branch (#268) * update version to v0.8.0 * fix lint * [Fix]: Install the latest mmcls * [Fix]: Add SimMIM in RAEDME Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> Co-authored-by: Your <you@example.com> Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com> Co-authored-by: liming <liming.ai@bytedance.com> Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com> Co-authored-by: YuanLiuuuuuu <3463423099@qq.com>
2022-03-31 18:47:54 +08:00
"\n",
"# Modify the model\n",
"checkpoint_file = 'work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth'\n",
"# Or directly using pre-train model provided by us\n",
"# checkpoint_file = 'https://download.openmmlab.com/mmselfsup/moco/mocov2_resnet50_8xb32-coslr-200e_in1k_20220225-89e03af4.pth'\n",
"\n",
"benchmark_cfg.model.backbone.frozen_stages=4\n",
"benchmark_cfg.model.backbone.init_cfg = dict(type='Pretrained', checkpoint=checkpoint_file)\n",
"\n",
"# As the imagenet_examples dataset folder doesn't have val dataset\n",
"# Modify the path and meta files of validation dataset\n",
"benchmark_cfg.data.val.data_source.data_prefix = 'data/imagenet/train'\n",
"benchmark_cfg.data.val.data_source.ann_file = 'data/imagenet/meta/train.txt'\n",
"\n",
"# Specify the learning rate scheduler\n",
"benchmark_cfg.lr_config = dict(policy='step', step=[1])\n",
"\n",
"# Output logs for every 10 iterations\n",
"benchmark_cfg.log_config.interval = 10\n",
"\n",
"# Modify runtime settings for demo\n",
"benchmark_cfg.runner = dict(type='EpochBasedRunner', max_epochs=2)\n",
"\n",
"# Specify the work directory\n",
"benchmark_cfg.work_dir = './work_dirs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k_colab'\n",
"\n",
"# Set the random seed and enable the deterministic option of cuDNN\n",
"# to keep the results' reproducible.\n",
"from mmselfsup.apis import set_random_seed\n",
"benchmark_cfg.seed = 0\n",
"set_random_seed(0, deterministic=True)\n",
"\n",
"benchmark_cfg.gpu_ids = range(1)\n"
]
},
{
"cell_type": "markdown",
"id": "9SeQvcRgzSgZ",
"metadata": {
"id": "9SeQvcRgzSgZ"
},
"source": [
"### Load extracted backbone weights to start a downstream task"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "ZmqFyBjYu8Cx",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZmqFyBjYu8Cx",
"outputId": "ba933799-e4c9-48ac-b244-454548dbd2c6"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-03-25 05:25:22,114 - mmcv - INFO - initialize ResNet with init_cfg {'type': 'Pretrained', 'checkpoint': 'work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth'}\n",
"2022-03-25 05:25:22,116 - mmcv - INFO - load model from: work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth\n",
"2022-03-25 05:25:22,122 - mmcv - INFO - load checkpoint from local path: work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth\n",
"2022-03-25 05:25:22,264 - mmcv - INFO - initialize ClsHead with init_cfg [{'type': 'Normal', 'std': 0.01, 'layer': 'Linear'}, {'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm', 'GroupNorm']}]\n",
"2022-03-25 05:25:22,285 - mmcv - INFO - \n",
"backbone.conv1.weight - torch.Size([64, 3, 7, 7]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,287 - mmcv - INFO - \n",
"backbone.bn1.weight - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,290 - mmcv - INFO - \n",
"backbone.bn1.bias - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,291 - mmcv - INFO - \n",
"backbone.layer1.0.conv1.weight - torch.Size([64, 64, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,298 - mmcv - INFO - \n",
"backbone.layer1.0.bn1.weight - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,299 - mmcv - INFO - \n",
"backbone.layer1.0.bn1.bias - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,303 - mmcv - INFO - \n",
"backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,308 - mmcv - INFO - \n",
"backbone.layer1.0.bn2.weight - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,311 - mmcv - INFO - \n",
"backbone.layer1.0.bn2.bias - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,312 - mmcv - INFO - \n",
"backbone.layer1.0.conv3.weight - torch.Size([256, 64, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,314 - mmcv - INFO - \n",
"backbone.layer1.0.bn3.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,316 - mmcv - INFO - \n",
"backbone.layer1.0.bn3.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,317 - mmcv - INFO - \n",
"backbone.layer1.0.downsample.0.weight - torch.Size([256, 64, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,319 - mmcv - INFO - \n",
"backbone.layer1.0.downsample.1.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,321 - mmcv - INFO - \n",
"backbone.layer1.0.downsample.1.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,327 - mmcv - INFO - \n",
"backbone.layer1.1.conv1.weight - torch.Size([64, 256, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,332 - mmcv - INFO - \n",
"backbone.layer1.1.bn1.weight - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,334 - mmcv - INFO - \n",
"backbone.layer1.1.bn1.bias - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,335 - mmcv - INFO - \n",
"backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,337 - mmcv - INFO - \n",
"backbone.layer1.1.bn2.weight - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,340 - mmcv - INFO - \n",
"backbone.layer1.1.bn2.bias - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,342 - mmcv - INFO - \n",
"backbone.layer1.1.conv3.weight - torch.Size([256, 64, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,345 - mmcv - INFO - \n",
"backbone.layer1.1.bn3.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,346 - mmcv - INFO - \n",
"backbone.layer1.1.bn3.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,348 - mmcv - INFO - \n",
"backbone.layer1.2.conv1.weight - torch.Size([64, 256, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,351 - mmcv - INFO - \n",
"backbone.layer1.2.bn1.weight - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,353 - mmcv - INFO - \n",
"backbone.layer1.2.bn1.bias - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,355 - mmcv - INFO - \n",
"backbone.layer1.2.conv2.weight - torch.Size([64, 64, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,358 - mmcv - INFO - \n",
"backbone.layer1.2.bn2.weight - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,360 - mmcv - INFO - \n",
"backbone.layer1.2.bn2.bias - torch.Size([64]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,361 - mmcv - INFO - \n",
"backbone.layer1.2.conv3.weight - torch.Size([256, 64, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,362 - mmcv - INFO - \n",
"backbone.layer1.2.bn3.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,364 - mmcv - INFO - \n",
"backbone.layer1.2.bn3.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,366 - mmcv - INFO - \n",
"backbone.layer2.0.conv1.weight - torch.Size([128, 256, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,368 - mmcv - INFO - \n",
"backbone.layer2.0.bn1.weight - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,369 - mmcv - INFO - \n",
"backbone.layer2.0.bn1.bias - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,371 - mmcv - INFO - \n",
"backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,373 - mmcv - INFO - \n",
"backbone.layer2.0.bn2.weight - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,375 - mmcv - INFO - \n",
"backbone.layer2.0.bn2.bias - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,377 - mmcv - INFO - \n",
"backbone.layer2.0.conv3.weight - torch.Size([512, 128, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,381 - mmcv - INFO - \n",
"backbone.layer2.0.bn3.weight - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,385 - mmcv - INFO - \n",
"backbone.layer2.0.bn3.bias - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,387 - mmcv - INFO - \n",
"backbone.layer2.0.downsample.0.weight - torch.Size([512, 256, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,388 - mmcv - INFO - \n",
"backbone.layer2.0.downsample.1.weight - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,390 - mmcv - INFO - \n",
"backbone.layer2.0.downsample.1.bias - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,391 - mmcv - INFO - \n",
"backbone.layer2.1.conv1.weight - torch.Size([128, 512, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,393 - mmcv - INFO - \n",
"backbone.layer2.1.bn1.weight - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,394 - mmcv - INFO - \n",
"backbone.layer2.1.bn1.bias - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,396 - mmcv - INFO - \n",
"backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,397 - mmcv - INFO - \n",
"backbone.layer2.1.bn2.weight - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,398 - mmcv - INFO - \n",
"backbone.layer2.1.bn2.bias - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,400 - mmcv - INFO - \n",
"backbone.layer2.1.conv3.weight - torch.Size([512, 128, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,401 - mmcv - INFO - \n",
"backbone.layer2.1.bn3.weight - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,403 - mmcv - INFO - \n",
"backbone.layer2.1.bn3.bias - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,404 - mmcv - INFO - \n",
"backbone.layer2.2.conv1.weight - torch.Size([128, 512, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,406 - mmcv - INFO - \n",
"backbone.layer2.2.bn1.weight - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,407 - mmcv - INFO - \n",
"backbone.layer2.2.bn1.bias - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,409 - mmcv - INFO - \n",
"backbone.layer2.2.conv2.weight - torch.Size([128, 128, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,410 - mmcv - INFO - \n",
"backbone.layer2.2.bn2.weight - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,412 - mmcv - INFO - \n",
"backbone.layer2.2.bn2.bias - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,413 - mmcv - INFO - \n",
"backbone.layer2.2.conv3.weight - torch.Size([512, 128, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,415 - mmcv - INFO - \n",
"backbone.layer2.2.bn3.weight - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,416 - mmcv - INFO - \n",
"backbone.layer2.2.bn3.bias - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,418 - mmcv - INFO - \n",
"backbone.layer2.3.conv1.weight - torch.Size([128, 512, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,419 - mmcv - INFO - \n",
"backbone.layer2.3.bn1.weight - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,421 - mmcv - INFO - \n",
"backbone.layer2.3.bn1.bias - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,422 - mmcv - INFO - \n",
"backbone.layer2.3.conv2.weight - torch.Size([128, 128, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,424 - mmcv - INFO - \n",
"backbone.layer2.3.bn2.weight - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,425 - mmcv - INFO - \n",
"backbone.layer2.3.bn2.bias - torch.Size([128]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,427 - mmcv - INFO - \n",
"backbone.layer2.3.conv3.weight - torch.Size([512, 128, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,428 - mmcv - INFO - \n",
"backbone.layer2.3.bn3.weight - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,430 - mmcv - INFO - \n",
"backbone.layer2.3.bn3.bias - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,431 - mmcv - INFO - \n",
"backbone.layer3.0.conv1.weight - torch.Size([256, 512, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,433 - mmcv - INFO - \n",
"backbone.layer3.0.bn1.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,434 - mmcv - INFO - \n",
"backbone.layer3.0.bn1.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,436 - mmcv - INFO - \n",
"backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,437 - mmcv - INFO - \n",
"backbone.layer3.0.bn2.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,439 - mmcv - INFO - \n",
"backbone.layer3.0.bn2.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,440 - mmcv - INFO - \n",
"backbone.layer3.0.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,442 - mmcv - INFO - \n",
"backbone.layer3.0.bn3.weight - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,443 - mmcv - INFO - \n",
"backbone.layer3.0.bn3.bias - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,445 - mmcv - INFO - \n",
"backbone.layer3.0.downsample.0.weight - torch.Size([1024, 512, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,446 - mmcv - INFO - \n",
"backbone.layer3.0.downsample.1.weight - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,448 - mmcv - INFO - \n",
"backbone.layer3.0.downsample.1.bias - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,449 - mmcv - INFO - \n",
"backbone.layer3.1.conv1.weight - torch.Size([256, 1024, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,451 - mmcv - INFO - \n",
"backbone.layer3.1.bn1.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,452 - mmcv - INFO - \n",
"backbone.layer3.1.bn1.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,454 - mmcv - INFO - \n",
"backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,456 - mmcv - INFO - \n",
"backbone.layer3.1.bn2.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,457 - mmcv - INFO - \n",
"backbone.layer3.1.bn2.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,458 - mmcv - INFO - \n",
"backbone.layer3.1.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,460 - mmcv - INFO - \n",
"backbone.layer3.1.bn3.weight - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,461 - mmcv - INFO - \n",
"backbone.layer3.1.bn3.bias - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,463 - mmcv - INFO - \n",
"backbone.layer3.2.conv1.weight - torch.Size([256, 1024, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,464 - mmcv - INFO - \n",
"backbone.layer3.2.bn1.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,466 - mmcv - INFO - \n",
"backbone.layer3.2.bn1.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,467 - mmcv - INFO - \n",
"backbone.layer3.2.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,469 - mmcv - INFO - \n",
"backbone.layer3.2.bn2.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,471 - mmcv - INFO - \n",
"backbone.layer3.2.bn2.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,472 - mmcv - INFO - \n",
"backbone.layer3.2.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,474 - mmcv - INFO - \n",
"backbone.layer3.2.bn3.weight - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,475 - mmcv - INFO - \n",
"backbone.layer3.2.bn3.bias - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,477 - mmcv - INFO - \n",
"backbone.layer3.3.conv1.weight - torch.Size([256, 1024, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,478 - mmcv - INFO - \n",
"backbone.layer3.3.bn1.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,480 - mmcv - INFO - \n",
"backbone.layer3.3.bn1.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,481 - mmcv - INFO - \n",
"backbone.layer3.3.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,482 - mmcv - INFO - \n",
"backbone.layer3.3.bn2.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,484 - mmcv - INFO - \n",
"backbone.layer3.3.bn2.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,485 - mmcv - INFO - \n",
"backbone.layer3.3.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,487 - mmcv - INFO - \n",
"backbone.layer3.3.bn3.weight - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,489 - mmcv - INFO - \n",
"backbone.layer3.3.bn3.bias - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,490 - mmcv - INFO - \n",
"backbone.layer3.4.conv1.weight - torch.Size([256, 1024, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,492 - mmcv - INFO - \n",
"backbone.layer3.4.bn1.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,493 - mmcv - INFO - \n",
"backbone.layer3.4.bn1.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,495 - mmcv - INFO - \n",
"backbone.layer3.4.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,496 - mmcv - INFO - \n",
"backbone.layer3.4.bn2.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,498 - mmcv - INFO - \n",
"backbone.layer3.4.bn2.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,499 - mmcv - INFO - \n",
"backbone.layer3.4.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,501 - mmcv - INFO - \n",
"backbone.layer3.4.bn3.weight - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,502 - mmcv - INFO - \n",
"backbone.layer3.4.bn3.bias - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,504 - mmcv - INFO - \n",
"backbone.layer3.5.conv1.weight - torch.Size([256, 1024, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,505 - mmcv - INFO - \n",
"backbone.layer3.5.bn1.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,507 - mmcv - INFO - \n",
"backbone.layer3.5.bn1.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,508 - mmcv - INFO - \n",
"backbone.layer3.5.conv2.weight - torch.Size([256, 256, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,510 - mmcv - INFO - \n",
"backbone.layer3.5.bn2.weight - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,511 - mmcv - INFO - \n",
"backbone.layer3.5.bn2.bias - torch.Size([256]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,513 - mmcv - INFO - \n",
"backbone.layer3.5.conv3.weight - torch.Size([1024, 256, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,514 - mmcv - INFO - \n",
"backbone.layer3.5.bn3.weight - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,515 - mmcv - INFO - \n",
"backbone.layer3.5.bn3.bias - torch.Size([1024]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,517 - mmcv - INFO - \n",
"backbone.layer4.0.conv1.weight - torch.Size([512, 1024, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,518 - mmcv - INFO - \n",
"backbone.layer4.0.bn1.weight - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,520 - mmcv - INFO - \n",
"backbone.layer4.0.bn1.bias - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,521 - mmcv - INFO - \n",
"backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,523 - mmcv - INFO - \n",
"backbone.layer4.0.bn2.weight - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,524 - mmcv - INFO - \n",
"backbone.layer4.0.bn2.bias - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,526 - mmcv - INFO - \n",
"backbone.layer4.0.conv3.weight - torch.Size([2048, 512, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,527 - mmcv - INFO - \n",
"backbone.layer4.0.bn3.weight - torch.Size([2048]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,529 - mmcv - INFO - \n",
"backbone.layer4.0.bn3.bias - torch.Size([2048]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,530 - mmcv - INFO - \n",
"backbone.layer4.0.downsample.0.weight - torch.Size([2048, 1024, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,532 - mmcv - INFO - \n",
"backbone.layer4.0.downsample.1.weight - torch.Size([2048]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,533 - mmcv - INFO - \n",
"backbone.layer4.0.downsample.1.bias - torch.Size([2048]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,535 - mmcv - INFO - \n",
"backbone.layer4.1.conv1.weight - torch.Size([512, 2048, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,536 - mmcv - INFO - \n",
"backbone.layer4.1.bn1.weight - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,538 - mmcv - INFO - \n",
"backbone.layer4.1.bn1.bias - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,539 - mmcv - INFO - \n",
"backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,540 - mmcv - INFO - \n",
"backbone.layer4.1.bn2.weight - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,542 - mmcv - INFO - \n",
"backbone.layer4.1.bn2.bias - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,543 - mmcv - INFO - \n",
"backbone.layer4.1.conv3.weight - torch.Size([2048, 512, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,545 - mmcv - INFO - \n",
"backbone.layer4.1.bn3.weight - torch.Size([2048]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,546 - mmcv - INFO - \n",
"backbone.layer4.1.bn3.bias - torch.Size([2048]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,548 - mmcv - INFO - \n",
"backbone.layer4.2.conv1.weight - torch.Size([512, 2048, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,550 - mmcv - INFO - \n",
"backbone.layer4.2.bn1.weight - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,551 - mmcv - INFO - \n",
"backbone.layer4.2.bn1.bias - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,553 - mmcv - INFO - \n",
"backbone.layer4.2.conv2.weight - torch.Size([512, 512, 3, 3]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,554 - mmcv - INFO - \n",
"backbone.layer4.2.bn2.weight - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,556 - mmcv - INFO - \n",
"backbone.layer4.2.bn2.bias - torch.Size([512]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,557 - mmcv - INFO - \n",
"backbone.layer4.2.conv3.weight - torch.Size([2048, 512, 1, 1]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,559 - mmcv - INFO - \n",
"backbone.layer4.2.bn3.weight - torch.Size([2048]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,560 - mmcv - INFO - \n",
"backbone.layer4.2.bn3.bias - torch.Size([2048]): \n",
"PretrainedInit: load from work_dirs/selfsup/relative-loc_resnet50_8xb64-steplr-70e_in1k_colab/relative-loc_backbone-weights.pth \n",
" \n",
"2022-03-25 05:25:22,561 - mmcv - INFO - \n",
"head.fc_cls.weight - torch.Size([1000, 2048]): \n",
"NormalInit: mean=0, std=0.01, bias=0 \n",
" \n",
"2022-03-25 05:25:22,563 - mmcv - INFO - \n",
"head.fc_cls.bias - torch.Size([1000]): \n",
"NormalInit: mean=0, std=0.01, bias=0 \n",
" \n",
"/content/mmselfsup/mmselfsup/datasets/base.py:29: UserWarning: The dataset part will be refactored, it will soon support `dict` in pipelines to save more information, the same as the pipeline in `MMDet`.\n",
" warnings.warn('The dataset part will be refactored, it will soon '\n",
"/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py:481: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.\n",
" cpuset_checked))\n",
"2022-03-25 05:25:22,924 - mmselfsup - INFO - Start running, host: root@f8465e2b77d5, work_dir: /content/mmselfsup/work_dirs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k_colab\n",
"2022-03-25 05:25:22,943 - mmselfsup - INFO - Hooks will be executed in the following order:\n",
"before_run:\n",
"(VERY_HIGH ) StepLrUpdaterHook \n",
"(NORMAL ) CheckpointHook \n",
"(LOW ) EvalHook \n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"before_train_epoch:\n",
"(VERY_HIGH ) StepLrUpdaterHook \n",
"(LOW ) IterTimerHook \n",
"(LOW ) EvalHook \n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"before_train_iter:\n",
"(VERY_HIGH ) StepLrUpdaterHook \n",
"(LOW ) IterTimerHook \n",
"(LOW ) EvalHook \n",
" -------------------- \n",
"after_train_iter:\n",
"(ABOVE_NORMAL) OptimizerHook \n",
"(NORMAL ) CheckpointHook \n",
"(LOW ) IterTimerHook \n",
"(LOW ) EvalHook \n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"after_train_epoch:\n",
"(NORMAL ) CheckpointHook \n",
"(LOW ) EvalHook \n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"before_val_epoch:\n",
"(LOW ) IterTimerHook \n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"before_val_iter:\n",
"(LOW ) IterTimerHook \n",
" -------------------- \n",
"after_val_iter:\n",
"(LOW ) IterTimerHook \n",
" -------------------- \n",
"after_val_epoch:\n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"after_run:\n",
"(VERY_LOW ) TextLoggerHook \n",
" -------------------- \n",
"2022-03-25 05:25:22,944 - mmselfsup - INFO - workflow: [('train', 1)], max: 2 epochs\n",
"2022-03-25 05:25:22,946 - mmselfsup - INFO - Checkpoints will be saved to /content/mmselfsup/work_dirs/benchmarks/classification/imagenet/resnet50_8xb32-steplr-100e_in1k_colab by HardDiskBackend.\n",
"2022-03-25 05:25:31,635 - mmselfsup - INFO - Epoch [1][10/41]\tlr: 3.000e+01, eta: 0:01:02, time: 0.868, data_time: 0.603, memory: 7428, loss: 0.8637, acc: 90.0000\n",
"2022-03-25 05:25:35,253 - mmselfsup - INFO - Epoch [1][20/41]\tlr: 3.000e+01, eta: 0:00:38, time: 0.362, data_time: 0.107, memory: 7428, loss: 0.0000, acc: 100.0000\n",
"2022-03-25 05:25:39,915 - mmselfsup - INFO - Epoch [1][30/41]\tlr: 3.000e+01, eta: 0:00:29, time: 0.466, data_time: 0.223, memory: 7428, loss: 0.0000, acc: 100.0000\n",
"2022-03-25 05:25:43,426 - mmselfsup - INFO - Epoch [1][40/41]\tlr: 3.000e+01, eta: 0:00:21, time: 0.351, data_time: 0.106, memory: 7428, loss: 0.0000, acc: 100.0000\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 41/41, 1.9 task/s, elapsed: 21s, ETA: 0s"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-03-25 05:26:04,802 - mmselfsup - INFO - head4_top1: 100.000\n",
"2022-03-25 05:26:04,804 - mmselfsup - INFO - head4_top5: 100.000\n",
"2022-03-25 05:26:04,807 - mmselfsup - INFO - Epoch(val) [1][41]\thead4_top1: 100.0000, head4_top5: 100.0000\n",
"2022-03-25 05:26:12,294 - mmselfsup - INFO - Epoch [2][10/41]\tlr: 3.000e+00, eta: 0:00:16, time: 0.748, data_time: 0.482, memory: 7428, loss: 0.0000, acc: 100.0000\n",
"2022-03-25 05:26:16,236 - mmselfsup - INFO - Epoch [2][20/41]\tlr: 3.000e+00, eta: 0:00:10, time: 0.394, data_time: 0.148, memory: 7428, loss: 0.0000, acc: 100.0000\n",
"2022-03-25 05:26:20,883 - mmselfsup - INFO - Epoch [2][30/41]\tlr: 3.000e+00, eta: 0:00:05, time: 0.465, data_time: 0.215, memory: 7428, loss: 0.0000, acc: 100.0000\n",
"2022-03-25 05:26:24,566 - mmselfsup - INFO - Epoch [2][40/41]\tlr: 3.000e+00, eta: 0:00:00, time: 0.368, data_time: 0.124, memory: 7428, loss: 0.0000, acc: 100.0000\n",
"2022-03-25 05:26:24,736 - mmselfsup - INFO - Saving checkpoint at 2 epochs\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 41/41, 2.1 task/s, elapsed: 20s, ETA: 0s"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-03-25 05:26:45,476 - mmselfsup - INFO - head4_top1: 100.000\n",
"2022-03-25 05:26:45,477 - mmselfsup - INFO - head4_top5: 100.000\n",
"2022-03-25 05:26:45,480 - mmselfsup - INFO - Epoch(val) [2][41]\thead4_top1: 100.0000, head4_top5: 100.0000\n"
]
}
],
"source": [
"import time\n",
"import mmcv\n",
"import os.path as osp\n",
"\n",
"from mmselfsup.datasets import build_dataset\n",
"from mmselfsup.models import build_algorithm\n",
"from mmselfsup.apis import train_model\n",
"\n",
"# Create the work directory\n",
"mmcv.mkdir_or_exist(osp.abspath(benchmark_cfg.work_dir))\n",
"\n",
"# Build the algorithm\n",
"model = build_algorithm(benchmark_cfg.model)\n",
"model.init_weights()\n",
"\n",
"# Build the dataset\n",
"datasets = [build_dataset(benchmark_cfg.data.train)]\n",
"\n",
"# Start linear probing\n",
"train_model(\n",
" model,\n",
" datasets,\n",
" benchmark_cfg,\n",
" distributed=False,\n",
" timestamp=time.strftime('%Y%m%d_%H%M%S', time.localtime()),\n",
" meta=dict())"
]
},
{
"cell_type": "markdown",
"id": "3DUKbf3Rs2D_",
"metadata": {
"id": "3DUKbf3Rs2D_"
},
"source": [
"**Note: As the demo only has one class in dataset, the model collapsed and the results of loss and acc should be ignored.**"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [],
"name": "mmselfsup_colab_tutorial.ipynb",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}