mmselfsup/docs/en/get_started.md

229 lines
8.3 KiB
Markdown
Raw Normal View History

# Get Started
2021-12-15 19:06:36 +08:00
- [Get Started](#get-started)
- [Prerequisites](#prerequisites)
- [Installation](#installation)
- [Best Practices](#best-practices)
- [Verify the installation](#verify-the-installation)
- [Customized installation](#customized-installation)
- [Benchmark](#benchmark)
- [CUDA versions](#cuda-versions)
- [Install MMCV without MIM](#install-mmcv-without-mim)
- [Another option: Docker Image](#another-option-docker-image)
- [Install on Google Colab](#install-on-google-colab)
- [Trouble shooting](#trouble-shooting)
- [Using multiple MMSelfSup versions](#using-multiple-mmselfsup-versions)
2021-12-15 19:06:36 +08:00
## Prerequisites
2021-12-15 19:06:36 +08:00
In this section we demonstrate how to prepare an environment with PyTorch.
2021-12-15 19:06:36 +08:00
MMselfSup works on Linux (Windows and macOS are not officially supported). It requires Python 3.6+, CUDA 9.2+ and PyTorch 1.5+.
2021-12-15 19:06:36 +08:00
If you are experienced with PyTorch and have already installed it, just skip this part and jump to the [next section](#installation). Otherwise, you can follow these steps for the preparation.
**Step 0.** Download and install Miniconda from the [official website](https://docs.conda.io/en/latest/miniconda.html).
**Step 1.** Create a conda environment and activate it.
```shell
conda create --name openmmlab python=3.8 -y
conda activate openmmlab
```
**Step 2.** Install PyTorch following [official instructions](https://pytorch.org/get-started/locally/), e.g.
On GPU platforms:
2021-12-15 19:06:36 +08:00
```shell
conda install pytorch torchvision -c pytorch
2021-12-15 19:06:36 +08:00
```
On CPU platforms:
2021-12-15 19:06:36 +08:00
```shell
conda install pytorch torchvision cpuonly -c pytorch
2021-12-15 19:06:36 +08:00
```
## Installation
We recommend that users follow our best practices to install MMSelfSup. However, the whole process is highly customizable. See [Customize Installation](#customized-installation) section for more information.
### Best Practices
**Step 0.** Install [MMCV](https://github.com/open-mmlab/mmcv) using [MIM](https://github.com/open-mmlab/mim).
2021-12-15 19:06:36 +08:00
```shell
pip install -U openmim
mim install mmcv-full
2021-12-15 19:06:36 +08:00
```
**Step 1.** Install MMSelfSup.
Case a: If you develop and run mmselfsup directly, install it from source:
2021-12-15 19:06:36 +08:00
```shell
git clone https://github.com/open-mmlab/mmselfsup.git
cd mmselfsup
pip install -v -e .
# "-v" means verbose, or more output
# "-e" means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.
2021-12-15 19:06:36 +08:00
```
Case b: If you use mmselfsup as a dependency or third-party package, install it with pip:
2021-12-15 19:06:36 +08:00
```shell
pip install mmselfsup
2021-12-15 19:06:36 +08:00
```
### Verify the installation
2021-12-15 19:06:36 +08:00
To verify whether MMSelfSup is installed correctly, we can run the following sample code to initialize a model and inference a demo image.
Bump version to v0.8.0 (#269) * [Fix]: Fix mmcls upgrade bug (#235) * [Feature]: Add multi machine dist_train (#232) * [Feature]: Add multi machine dist_train * [Fix]: Change bash to sh * [Fix]: Fix missing sh suffix * [Refactor]: Change bash to sh * [Refactor] Add unit test (#234) * [Refactor] add unit test * update workflow * update * [Fix] fix lint * update test * refactor moco and densecl unit test * fix lint * add unit test * update unit test * remove modification * [Feature]: Add MAE metafile (#238) * [Feature]: Add MAE metafile * [Fix]: Fix lint * [Fix]: Change LARS to AdamW in the metafile of MAE * [Fix] fix codecov bug (#241) * [Fix] fix codecov bug * update comment * [Refactor] Using MMCls backbones (#233) * [Refactor] using backbones from MMCls * [Refactor] modify the unit test * [Fix] modify default setting of out_indices * [Docs] fix lint * [Refactor] modify super init * [Refactore] remove res_layer.py * using mmcv PatchEmbed * [Fix]: Fix outdated problem (#249) * [Fix]: Fix outdated problem * [Fix]: Update MoCov3 bibtex * [Fix]: Use abs path in README * [Fix]: Reformat MAE bibtex * [Fix]: Reformat MoCov3 bibtex * [Feature] Resume from the latest checkpoint automatically. (#245) * [Feature] Resume from the latest checkpoint automatically. * fix windows path problem * fix lint * add code reference * [Docs] add docstring for ResNet and ResNeXt (#252) * [Feature] support KNN benchmark (#243) * [Feature] support KNN benchmark * [Fix] add docstring and multi-machine testing * [Fix] fix lint * [Fix] change args format and check init_cfg * [Docs] add benchmark tutorial * [Docs] add benchmark results * [Feature]: SimMIM supported (#239) * [Feature]: SimMIM Pretrain * [Feature]: Add mix precision and 16x128 config * [Fix]: Fix config import bug * [Fix]: Fix config bug * [Feature]: Simim Finetune * [Fix]: Log every 100 * [Fix]: Fix eval problem * [Feature]: Add docstring for simmim * [Refactor]: Merge layer wise lr decay to Default constructor * [Fix]:Fix simmim evaluation bug * [Fix]: Change model to be compatible to latest version of mmcls * [Fix]: Fix lint * [Fix]: Rewrite forward_train for classification cls * [Feature]: Add UT * [Fix]: Fix lint * [Feature]: Add 32 gpus training for simmim ft * [Fix]: Rename mmcls classifier wrapper * [Fix]: Add docstring to SimMIMNeck * [Feature]: Generate docstring for the forward function of simmim encoder * [Fix]: Rewrite the class docstring for constructor * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Reformat config * [Fix]: Add img resolution * [Feature]: Add readme and metafile * [Fix]: Fix typo in README.md * [Fix]: Change BlackMaskGen to BlockwiseMaskGenerator * [Fix]: Change the name of SwinForSimMIM * [Fix]: Delete irrelevant files * [Feature]: Create extra transformerfinetuneconstructor * [Fix]: Fix lint * [Fix]: Update SimMIM README * [Fix]: Change SimMIMPretrainHead to SimMIMHead * [Fix]: Fix the docstring of ft constructor * [Fix]: Fix UT * [Fix]: Recover deletion Co-authored-by: Your <you@example.com> * [Fix] add seed to distributed sampler (#250) * [Fix] add seed to distributed sampler * fix lint * [Feature] Add ImageNet21k (#225) * solve memory leak by limited implementation * fix lint problem Co-authored-by: liming <liming.ai@bytedance.com> * [Refactor] change args format to '--a-b' (#253) * [Refactor] change args format to `--a-b` * modify tsne script * modify 'sh' files * modify getting_started.md * modify getting_started.md * [Fix] fix 'mkdir' error in prepare_voc07_cls.sh (#261) * [Fix] fix positional parameter error (#260) * [Fix] fix command errors in benchmarks tutorial (#263) * [Docs] add brief installation steps in README.md (#265) * [Docs] add colab tutorial (#247) * [Docs] add colab tutorial * fix lint * modify the colab tutorial, using API to train the model * modify the description * remove # * modify the command * [Docs] translate 6_benchmarks.md into Chinese (#262) * [Docs] translate 6_benchmarks.md into Chinese * Update 6_benchmarks.md change 基准 to 基准评测 * Update 6_benchmarks.md (1) Add Chinese translation of ‘1 folder for ImageNet nearest-neighbor classification task’ (2) 数据预准备 -> 数据准备 * [Docs] remove install scripts in README (#267) * [Docs] Update version information in dev branch (#268) * update version to v0.8.0 * fix lint * [Fix]: Install the latest mmcls * [Fix]: Add SimMIM in RAEDME Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> Co-authored-by: Your <you@example.com> Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com> Co-authored-by: liming <liming.ai@bytedance.com> Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com> Co-authored-by: YuanLiuuuuuu <3463423099@qq.com>
2022-03-31 18:47:54 +08:00
```python
import torch
Bump version to v0.8.0 (#269) * [Fix]: Fix mmcls upgrade bug (#235) * [Feature]: Add multi machine dist_train (#232) * [Feature]: Add multi machine dist_train * [Fix]: Change bash to sh * [Fix]: Fix missing sh suffix * [Refactor]: Change bash to sh * [Refactor] Add unit test (#234) * [Refactor] add unit test * update workflow * update * [Fix] fix lint * update test * refactor moco and densecl unit test * fix lint * add unit test * update unit test * remove modification * [Feature]: Add MAE metafile (#238) * [Feature]: Add MAE metafile * [Fix]: Fix lint * [Fix]: Change LARS to AdamW in the metafile of MAE * [Fix] fix codecov bug (#241) * [Fix] fix codecov bug * update comment * [Refactor] Using MMCls backbones (#233) * [Refactor] using backbones from MMCls * [Refactor] modify the unit test * [Fix] modify default setting of out_indices * [Docs] fix lint * [Refactor] modify super init * [Refactore] remove res_layer.py * using mmcv PatchEmbed * [Fix]: Fix outdated problem (#249) * [Fix]: Fix outdated problem * [Fix]: Update MoCov3 bibtex * [Fix]: Use abs path in README * [Fix]: Reformat MAE bibtex * [Fix]: Reformat MoCov3 bibtex * [Feature] Resume from the latest checkpoint automatically. (#245) * [Feature] Resume from the latest checkpoint automatically. * fix windows path problem * fix lint * add code reference * [Docs] add docstring for ResNet and ResNeXt (#252) * [Feature] support KNN benchmark (#243) * [Feature] support KNN benchmark * [Fix] add docstring and multi-machine testing * [Fix] fix lint * [Fix] change args format and check init_cfg * [Docs] add benchmark tutorial * [Docs] add benchmark results * [Feature]: SimMIM supported (#239) * [Feature]: SimMIM Pretrain * [Feature]: Add mix precision and 16x128 config * [Fix]: Fix config import bug * [Fix]: Fix config bug * [Feature]: Simim Finetune * [Fix]: Log every 100 * [Fix]: Fix eval problem * [Feature]: Add docstring for simmim * [Refactor]: Merge layer wise lr decay to Default constructor * [Fix]:Fix simmim evaluation bug * [Fix]: Change model to be compatible to latest version of mmcls * [Fix]: Fix lint * [Fix]: Rewrite forward_train for classification cls * [Feature]: Add UT * [Fix]: Fix lint * [Feature]: Add 32 gpus training for simmim ft * [Fix]: Rename mmcls classifier wrapper * [Fix]: Add docstring to SimMIMNeck * [Feature]: Generate docstring for the forward function of simmim encoder * [Fix]: Rewrite the class docstring for constructor * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Reformat config * [Fix]: Add img resolution * [Feature]: Add readme and metafile * [Fix]: Fix typo in README.md * [Fix]: Change BlackMaskGen to BlockwiseMaskGenerator * [Fix]: Change the name of SwinForSimMIM * [Fix]: Delete irrelevant files * [Feature]: Create extra transformerfinetuneconstructor * [Fix]: Fix lint * [Fix]: Update SimMIM README * [Fix]: Change SimMIMPretrainHead to SimMIMHead * [Fix]: Fix the docstring of ft constructor * [Fix]: Fix UT * [Fix]: Recover deletion Co-authored-by: Your <you@example.com> * [Fix] add seed to distributed sampler (#250) * [Fix] add seed to distributed sampler * fix lint * [Feature] Add ImageNet21k (#225) * solve memory leak by limited implementation * fix lint problem Co-authored-by: liming <liming.ai@bytedance.com> * [Refactor] change args format to '--a-b' (#253) * [Refactor] change args format to `--a-b` * modify tsne script * modify 'sh' files * modify getting_started.md * modify getting_started.md * [Fix] fix 'mkdir' error in prepare_voc07_cls.sh (#261) * [Fix] fix positional parameter error (#260) * [Fix] fix command errors in benchmarks tutorial (#263) * [Docs] add brief installation steps in README.md (#265) * [Docs] add colab tutorial (#247) * [Docs] add colab tutorial * fix lint * modify the colab tutorial, using API to train the model * modify the description * remove # * modify the command * [Docs] translate 6_benchmarks.md into Chinese (#262) * [Docs] translate 6_benchmarks.md into Chinese * Update 6_benchmarks.md change 基准 to 基准评测 * Update 6_benchmarks.md (1) Add Chinese translation of ‘1 folder for ImageNet nearest-neighbor classification task’ (2) 数据预准备 -> 数据准备 * [Docs] remove install scripts in README (#267) * [Docs] Update version information in dev branch (#268) * update version to v0.8.0 * fix lint * [Fix]: Install the latest mmcls * [Fix]: Add SimMIM in RAEDME Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> Co-authored-by: Your <you@example.com> Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com> Co-authored-by: liming <liming.ai@bytedance.com> Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com> Co-authored-by: YuanLiuuuuuu <3463423099@qq.com>
2022-03-31 18:47:54 +08:00
from mmselfsup.models import build_algorithm
Bump version to v0.8.0 (#269) * [Fix]: Fix mmcls upgrade bug (#235) * [Feature]: Add multi machine dist_train (#232) * [Feature]: Add multi machine dist_train * [Fix]: Change bash to sh * [Fix]: Fix missing sh suffix * [Refactor]: Change bash to sh * [Refactor] Add unit test (#234) * [Refactor] add unit test * update workflow * update * [Fix] fix lint * update test * refactor moco and densecl unit test * fix lint * add unit test * update unit test * remove modification * [Feature]: Add MAE metafile (#238) * [Feature]: Add MAE metafile * [Fix]: Fix lint * [Fix]: Change LARS to AdamW in the metafile of MAE * [Fix] fix codecov bug (#241) * [Fix] fix codecov bug * update comment * [Refactor] Using MMCls backbones (#233) * [Refactor] using backbones from MMCls * [Refactor] modify the unit test * [Fix] modify default setting of out_indices * [Docs] fix lint * [Refactor] modify super init * [Refactore] remove res_layer.py * using mmcv PatchEmbed * [Fix]: Fix outdated problem (#249) * [Fix]: Fix outdated problem * [Fix]: Update MoCov3 bibtex * [Fix]: Use abs path in README * [Fix]: Reformat MAE bibtex * [Fix]: Reformat MoCov3 bibtex * [Feature] Resume from the latest checkpoint automatically. (#245) * [Feature] Resume from the latest checkpoint automatically. * fix windows path problem * fix lint * add code reference * [Docs] add docstring for ResNet and ResNeXt (#252) * [Feature] support KNN benchmark (#243) * [Feature] support KNN benchmark * [Fix] add docstring and multi-machine testing * [Fix] fix lint * [Fix] change args format and check init_cfg * [Docs] add benchmark tutorial * [Docs] add benchmark results * [Feature]: SimMIM supported (#239) * [Feature]: SimMIM Pretrain * [Feature]: Add mix precision and 16x128 config * [Fix]: Fix config import bug * [Fix]: Fix config bug * [Feature]: Simim Finetune * [Fix]: Log every 100 * [Fix]: Fix eval problem * [Feature]: Add docstring for simmim * [Refactor]: Merge layer wise lr decay to Default constructor * [Fix]:Fix simmim evaluation bug * [Fix]: Change model to be compatible to latest version of mmcls * [Fix]: Fix lint * [Fix]: Rewrite forward_train for classification cls * [Feature]: Add UT * [Fix]: Fix lint * [Feature]: Add 32 gpus training for simmim ft * [Fix]: Rename mmcls classifier wrapper * [Fix]: Add docstring to SimMIMNeck * [Feature]: Generate docstring for the forward function of simmim encoder * [Fix]: Rewrite the class docstring for constructor * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Reformat config * [Fix]: Add img resolution * [Feature]: Add readme and metafile * [Fix]: Fix typo in README.md * [Fix]: Change BlackMaskGen to BlockwiseMaskGenerator * [Fix]: Change the name of SwinForSimMIM * [Fix]: Delete irrelevant files * [Feature]: Create extra transformerfinetuneconstructor * [Fix]: Fix lint * [Fix]: Update SimMIM README * [Fix]: Change SimMIMPretrainHead to SimMIMHead * [Fix]: Fix the docstring of ft constructor * [Fix]: Fix UT * [Fix]: Recover deletion Co-authored-by: Your <you@example.com> * [Fix] add seed to distributed sampler (#250) * [Fix] add seed to distributed sampler * fix lint * [Feature] Add ImageNet21k (#225) * solve memory leak by limited implementation * fix lint problem Co-authored-by: liming <liming.ai@bytedance.com> * [Refactor] change args format to '--a-b' (#253) * [Refactor] change args format to `--a-b` * modify tsne script * modify 'sh' files * modify getting_started.md * modify getting_started.md * [Fix] fix 'mkdir' error in prepare_voc07_cls.sh (#261) * [Fix] fix positional parameter error (#260) * [Fix] fix command errors in benchmarks tutorial (#263) * [Docs] add brief installation steps in README.md (#265) * [Docs] add colab tutorial (#247) * [Docs] add colab tutorial * fix lint * modify the colab tutorial, using API to train the model * modify the description * remove # * modify the command * [Docs] translate 6_benchmarks.md into Chinese (#262) * [Docs] translate 6_benchmarks.md into Chinese * Update 6_benchmarks.md change 基准 to 基准评测 * Update 6_benchmarks.md (1) Add Chinese translation of ‘1 folder for ImageNet nearest-neighbor classification task’ (2) 数据预准备 -> 数据准备 * [Docs] remove install scripts in README (#267) * [Docs] Update version information in dev branch (#268) * update version to v0.8.0 * fix lint * [Fix]: Install the latest mmcls * [Fix]: Add SimMIM in RAEDME Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> Co-authored-by: Your <you@example.com> Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com> Co-authored-by: liming <liming.ai@bytedance.com> Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com> Co-authored-by: YuanLiuuuuuu <3463423099@qq.com>
2022-03-31 18:47:54 +08:00
model_config = dict(
type='Classification',
backbone=dict(
type='ResNet',
depth=50,
in_channels=3,
num_stages=4,
strides=(1, 2, 2, 2),
dilations=(1, 1, 1, 1),
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'),
frozen_stages=-1),
head=dict(
type='ClsHead', with_avg_pool=True, in_channels=2048,
num_classes=1000))
Bump version to v0.8.0 (#269) * [Fix]: Fix mmcls upgrade bug (#235) * [Feature]: Add multi machine dist_train (#232) * [Feature]: Add multi machine dist_train * [Fix]: Change bash to sh * [Fix]: Fix missing sh suffix * [Refactor]: Change bash to sh * [Refactor] Add unit test (#234) * [Refactor] add unit test * update workflow * update * [Fix] fix lint * update test * refactor moco and densecl unit test * fix lint * add unit test * update unit test * remove modification * [Feature]: Add MAE metafile (#238) * [Feature]: Add MAE metafile * [Fix]: Fix lint * [Fix]: Change LARS to AdamW in the metafile of MAE * [Fix] fix codecov bug (#241) * [Fix] fix codecov bug * update comment * [Refactor] Using MMCls backbones (#233) * [Refactor] using backbones from MMCls * [Refactor] modify the unit test * [Fix] modify default setting of out_indices * [Docs] fix lint * [Refactor] modify super init * [Refactore] remove res_layer.py * using mmcv PatchEmbed * [Fix]: Fix outdated problem (#249) * [Fix]: Fix outdated problem * [Fix]: Update MoCov3 bibtex * [Fix]: Use abs path in README * [Fix]: Reformat MAE bibtex * [Fix]: Reformat MoCov3 bibtex * [Feature] Resume from the latest checkpoint automatically. (#245) * [Feature] Resume from the latest checkpoint automatically. * fix windows path problem * fix lint * add code reference * [Docs] add docstring for ResNet and ResNeXt (#252) * [Feature] support KNN benchmark (#243) * [Feature] support KNN benchmark * [Fix] add docstring and multi-machine testing * [Fix] fix lint * [Fix] change args format and check init_cfg * [Docs] add benchmark tutorial * [Docs] add benchmark results * [Feature]: SimMIM supported (#239) * [Feature]: SimMIM Pretrain * [Feature]: Add mix precision and 16x128 config * [Fix]: Fix config import bug * [Fix]: Fix config bug * [Feature]: Simim Finetune * [Fix]: Log every 100 * [Fix]: Fix eval problem * [Feature]: Add docstring for simmim * [Refactor]: Merge layer wise lr decay to Default constructor * [Fix]:Fix simmim evaluation bug * [Fix]: Change model to be compatible to latest version of mmcls * [Fix]: Fix lint * [Fix]: Rewrite forward_train for classification cls * [Feature]: Add UT * [Fix]: Fix lint * [Feature]: Add 32 gpus training for simmim ft * [Fix]: Rename mmcls classifier wrapper * [Fix]: Add docstring to SimMIMNeck * [Feature]: Generate docstring for the forward function of simmim encoder * [Fix]: Rewrite the class docstring for constructor * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Reformat config * [Fix]: Add img resolution * [Feature]: Add readme and metafile * [Fix]: Fix typo in README.md * [Fix]: Change BlackMaskGen to BlockwiseMaskGenerator * [Fix]: Change the name of SwinForSimMIM * [Fix]: Delete irrelevant files * [Feature]: Create extra transformerfinetuneconstructor * [Fix]: Fix lint * [Fix]: Update SimMIM README * [Fix]: Change SimMIMPretrainHead to SimMIMHead * [Fix]: Fix the docstring of ft constructor * [Fix]: Fix UT * [Fix]: Recover deletion Co-authored-by: Your <you@example.com> * [Fix] add seed to distributed sampler (#250) * [Fix] add seed to distributed sampler * fix lint * [Feature] Add ImageNet21k (#225) * solve memory leak by limited implementation * fix lint problem Co-authored-by: liming <liming.ai@bytedance.com> * [Refactor] change args format to '--a-b' (#253) * [Refactor] change args format to `--a-b` * modify tsne script * modify 'sh' files * modify getting_started.md * modify getting_started.md * [Fix] fix 'mkdir' error in prepare_voc07_cls.sh (#261) * [Fix] fix positional parameter error (#260) * [Fix] fix command errors in benchmarks tutorial (#263) * [Docs] add brief installation steps in README.md (#265) * [Docs] add colab tutorial (#247) * [Docs] add colab tutorial * fix lint * modify the colab tutorial, using API to train the model * modify the description * remove # * modify the command * [Docs] translate 6_benchmarks.md into Chinese (#262) * [Docs] translate 6_benchmarks.md into Chinese * Update 6_benchmarks.md change 基准 to 基准评测 * Update 6_benchmarks.md (1) Add Chinese translation of ‘1 folder for ImageNet nearest-neighbor classification task’ (2) 数据预准备 -> 数据准备 * [Docs] remove install scripts in README (#267) * [Docs] Update version information in dev branch (#268) * update version to v0.8.0 * fix lint * [Fix]: Install the latest mmcls * [Fix]: Add SimMIM in RAEDME Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> Co-authored-by: Your <you@example.com> Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com> Co-authored-by: liming <liming.ai@bytedance.com> Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com> Co-authored-by: YuanLiuuuuuu <3463423099@qq.com>
2022-03-31 18:47:54 +08:00
model = build_algorithm(model_config).cuda()
image = torch.randn((1, 3, 224, 224)).cuda()
label = torch.tensor([1]).cuda()
loss = model.forward_train(image, label)
Bump version to v0.8.0 (#269) * [Fix]: Fix mmcls upgrade bug (#235) * [Feature]: Add multi machine dist_train (#232) * [Feature]: Add multi machine dist_train * [Fix]: Change bash to sh * [Fix]: Fix missing sh suffix * [Refactor]: Change bash to sh * [Refactor] Add unit test (#234) * [Refactor] add unit test * update workflow * update * [Fix] fix lint * update test * refactor moco and densecl unit test * fix lint * add unit test * update unit test * remove modification * [Feature]: Add MAE metafile (#238) * [Feature]: Add MAE metafile * [Fix]: Fix lint * [Fix]: Change LARS to AdamW in the metafile of MAE * [Fix] fix codecov bug (#241) * [Fix] fix codecov bug * update comment * [Refactor] Using MMCls backbones (#233) * [Refactor] using backbones from MMCls * [Refactor] modify the unit test * [Fix] modify default setting of out_indices * [Docs] fix lint * [Refactor] modify super init * [Refactore] remove res_layer.py * using mmcv PatchEmbed * [Fix]: Fix outdated problem (#249) * [Fix]: Fix outdated problem * [Fix]: Update MoCov3 bibtex * [Fix]: Use abs path in README * [Fix]: Reformat MAE bibtex * [Fix]: Reformat MoCov3 bibtex * [Feature] Resume from the latest checkpoint automatically. (#245) * [Feature] Resume from the latest checkpoint automatically. * fix windows path problem * fix lint * add code reference * [Docs] add docstring for ResNet and ResNeXt (#252) * [Feature] support KNN benchmark (#243) * [Feature] support KNN benchmark * [Fix] add docstring and multi-machine testing * [Fix] fix lint * [Fix] change args format and check init_cfg * [Docs] add benchmark tutorial * [Docs] add benchmark results * [Feature]: SimMIM supported (#239) * [Feature]: SimMIM Pretrain * [Feature]: Add mix precision and 16x128 config * [Fix]: Fix config import bug * [Fix]: Fix config bug * [Feature]: Simim Finetune * [Fix]: Log every 100 * [Fix]: Fix eval problem * [Feature]: Add docstring for simmim * [Refactor]: Merge layer wise lr decay to Default constructor * [Fix]:Fix simmim evaluation bug * [Fix]: Change model to be compatible to latest version of mmcls * [Fix]: Fix lint * [Fix]: Rewrite forward_train for classification cls * [Feature]: Add UT * [Fix]: Fix lint * [Feature]: Add 32 gpus training for simmim ft * [Fix]: Rename mmcls classifier wrapper * [Fix]: Add docstring to SimMIMNeck * [Feature]: Generate docstring for the forward function of simmim encoder * [Fix]: Rewrite the class docstring for constructor * [Fix]: Fix lint * [Fix]: Fix UT * [Fix]: Reformat config * [Fix]: Add img resolution * [Feature]: Add readme and metafile * [Fix]: Fix typo in README.md * [Fix]: Change BlackMaskGen to BlockwiseMaskGenerator * [Fix]: Change the name of SwinForSimMIM * [Fix]: Delete irrelevant files * [Feature]: Create extra transformerfinetuneconstructor * [Fix]: Fix lint * [Fix]: Update SimMIM README * [Fix]: Change SimMIMPretrainHead to SimMIMHead * [Fix]: Fix the docstring of ft constructor * [Fix]: Fix UT * [Fix]: Recover deletion Co-authored-by: Your <you@example.com> * [Fix] add seed to distributed sampler (#250) * [Fix] add seed to distributed sampler * fix lint * [Feature] Add ImageNet21k (#225) * solve memory leak by limited implementation * fix lint problem Co-authored-by: liming <liming.ai@bytedance.com> * [Refactor] change args format to '--a-b' (#253) * [Refactor] change args format to `--a-b` * modify tsne script * modify 'sh' files * modify getting_started.md * modify getting_started.md * [Fix] fix 'mkdir' error in prepare_voc07_cls.sh (#261) * [Fix] fix positional parameter error (#260) * [Fix] fix command errors in benchmarks tutorial (#263) * [Docs] add brief installation steps in README.md (#265) * [Docs] add colab tutorial (#247) * [Docs] add colab tutorial * fix lint * modify the colab tutorial, using API to train the model * modify the description * remove # * modify the command * [Docs] translate 6_benchmarks.md into Chinese (#262) * [Docs] translate 6_benchmarks.md into Chinese * Update 6_benchmarks.md change 基准 to 基准评测 * Update 6_benchmarks.md (1) Add Chinese translation of ‘1 folder for ImageNet nearest-neighbor classification task’ (2) 数据预准备 -> 数据准备 * [Docs] remove install scripts in README (#267) * [Docs] Update version information in dev branch (#268) * update version to v0.8.0 * fix lint * [Fix]: Install the latest mmcls * [Fix]: Add SimMIM in RAEDME Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Jiahao Xie <52497952+Jiahao000@users.noreply.github.com> Co-authored-by: Your <you@example.com> Co-authored-by: Ming Li <73068772+mitming@users.noreply.github.com> Co-authored-by: liming <liming.ai@bytedance.com> Co-authored-by: RenQin <45731309+soonera@users.noreply.github.com> Co-authored-by: YuanLiuuuuuu <3463423099@qq.com>
2022-03-31 18:47:54 +08:00
```
The above code is supposed to run successfully upon you finish the installation.
### Customized installation
2021-12-15 19:06:36 +08:00
#### Benchmark
2021-12-15 19:06:36 +08:00
The [Best Practices](#best-practices) is for basic usage, if you need to evaluate your pre-training model with some downstream tasks such as detection or segmentation, please also install [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMSegmentation](https://github.com/open-mmlab/mmsegmentation).
2021-12-15 19:06:36 +08:00
If you don't run MMDetection and MMSegmentation benchmark, it is unnecessary to install them.
2021-12-15 19:06:36 +08:00
You can simply install MMDetection and MMSegmentation with the following command:
2021-12-15 19:06:36 +08:00
```shell
pip install mmdet mmsegmentation
2021-12-15 19:06:36 +08:00
```
For more details, you can check the installation page of [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/en/get_started.md) and [MMSegmentation](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/en/get_started.md).
2021-12-15 19:06:36 +08:00
#### CUDA versions
2021-12-15 19:06:36 +08:00
When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our recommendations:
2021-12-15 19:06:36 +08:00
- For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.
- For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.
Please make sure the GPU driver satisfies the minimum version requirements. See [this table](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions) for more information.
```{note}
Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be compiled locally. However if you hope to compile MMCV from source or develop other CUDA operators, you need to install the complete CUDA toolkit from NVIDIA's [website](https://developer.nvidia.com/cuda-downloads), and its version should match the CUDA version of PyTorch. i.e., the specified version of cudatoolkit in `conda install` command.
2021-12-15 19:06:36 +08:00
```
#### Install MMCV without MIM
2021-12-15 19:06:36 +08:00
MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such dependencies automatically and makes the installation easier. However, it is not a must.
To install MMCV with pip instead of MIM, please follow [MMCV installation guides](https://mmcv.readthedocs.io/en/latest/get_started/installation.html). This requires manually specifying a find-url based on PyTorch version and its CUDA version.
For example, the following command install mmcv-full built for PyTorch 1.10.x and CUDA 11.3.
```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html
2021-12-15 19:06:36 +08:00
```
#### Another option: Docker Image
We provide a [Dockerfile](/docker/Dockerfile) to build an image.
2021-12-15 19:06:36 +08:00
```shell
# build an image with PyTorch 1.6.0, CUDA 10.1, CUDNN 7.
docker build -f ./docker/Dockerfile --rm -t mmselfsup:torch1.10.0-cuda11.3-cudnn8 .
2021-12-15 19:06:36 +08:00
```
**Important:** Make sure you've installed the [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker).
2021-12-15 19:06:36 +08:00
Run the following cmd:
2021-12-15 19:06:36 +08:00
```shell
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/workspace/mmselfsup/data mmselfsup:torch1.10.0-cuda11.3-cudnn8 /bin/bash
2021-12-15 19:06:36 +08:00
```
`{DATA_DIR}` is your local folder containing all these datasets.
2021-12-15 19:06:36 +08:00
#### Install on Google Colab
2021-12-15 19:06:36 +08:00
[Google Colab](https://research.google.com/) usually has PyTorch installed,
thus we only need to install MMCV and MMSeflSup with the following commands.
2021-12-15 19:06:36 +08:00
**Step 0.** Install [MMCV](https://github.com/open-mmlab/mmcv) using [MIM](https://github.com/open-mmlab/mim).
2021-12-15 19:06:36 +08:00
```shell
!pip3 install openmim
!mim install mmcv-full
2021-12-15 19:06:36 +08:00
```
**Step 1.** Install MMSelfSup from the source.
2021-12-15 19:06:36 +08:00
```shell
!git clone https://github.com/open-mmlab/mmselfsup.git
%cd mmselfsup
!pip install -e .
2021-12-15 19:06:36 +08:00
```
**Step 2.** Verification.
2021-12-15 19:06:36 +08:00
```python
import mmselfsup
print(mmselfsup.__version__)
# Example output: 0.9.0
```
2021-12-15 19:06:36 +08:00
```{note}
Within Jupyter, the exclamation mark `!` is used to call external executables and `%cd` is a [magic command](https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-cd) to change the current working directory of Python.
2021-12-15 19:06:36 +08:00
```
### Trouble shooting
If you have some issues during the installation, please first view the [FAQ](faq.md) page.
You may [open an issue](https://github.com/open-mmlab/mmselfsup/issues/new/choose) on GitHub if no solution is found.
## Using multiple MMSelfSup versions
2021-12-15 19:06:36 +08:00
If there are more than one mmselfsup on your machine, and you want to use them alternatively, the recommended way is to create multiple conda environments and use different environments for different versions.
2021-12-15 19:06:36 +08:00
Another way is to insert the following code to the main scripts (`train.py`, `test.py` or any other scripts you run)
2021-12-15 19:06:36 +08:00
```python
import os.path as osp
import sys
sys.path.insert(0, osp.join(osp.dirname(osp.abspath(__file__)), '../'))
```
Or run the following command in the terminal of corresponding root folder to temporally use the current one.
```shell
export PYTHONPATH="$(pwd)":$PYTHONPATH
```