54 lines
3.2 KiB
Markdown
54 lines
3.2 KiB
Markdown
|
# MAE
|
|||
|
|
|||
|
> [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377)
|
|||
|
|
|||
|
<!-- [ALGORITHM] -->
|
|||
|
|
|||
|
## Abstract
|
|||
|
|
|||
|
This paper shows that masked autoencoders (MAE) are
|
|||
|
scalable self-supervised learners for computer vision. Our
|
|||
|
MAE approach is simple: we mask random patches of the
|
|||
|
input image and reconstruct the missing pixels. It is based
|
|||
|
on two core designs. First, we develop an asymmetric
|
|||
|
encoder-decoder architecture, with an encoder that operates only on the
|
|||
|
visible subset of patches (without mask tokens), along with a lightweight
|
|||
|
decoder that reconstructs the original image from the latent representation
|
|||
|
and mask tokens. Second, we find that masking a high proportion
|
|||
|
of the input image, e.g., 75%, yields a nontrivial and
|
|||
|
meaningful self-supervisory task. Coupling these two designs enables us to
|
|||
|
train large models efficiently and effectively: we accelerate
|
|||
|
training (by 3× or more) and improve accuracy. Our scalable approach allows
|
|||
|
for learning high-capacity models that generalize well: e.g., a vanilla
|
|||
|
ViT-Huge model achieves the best accuracy (87.8%) among
|
|||
|
methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pretraining and shows promising scaling behavior.
|
|||
|
|
|||
|
<div align="center">
|
|||
|
<img src="https://user-images.githubusercontent.com/30762564/150733959-2959852a-c7bd-4d3f-911f-3e8d8839fe67.png" width="40%"/>
|
|||
|
</div>
|
|||
|
|
|||
|
|
|||
|
## Models and Benchmarks
|
|||
|
|
|||
|
Here, we report the results of the model, which is pre-trained on ImageNet1K
|
|||
|
for 400 epochs, the details are below:
|
|||
|
|
|||
|
|
|||
|
|
|||
|
| Backbone | Pre-train epoch | Fine-tuning Top-1 | Pre-train Config | Fine-tuning Config | Download |
|
|||
|
| :------: | :-------------: | :---------------: | :-------------------------------------------------: | :---------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
|||
|
| ViT-B/16 | 400 | 83.1 | [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mae/mae_vit-b-p16_8xb512-coslr-400e_in1k.py) | [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/vit-b-p16_ft-8xb128-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k-224_20220223-85be947b.pth) | [log](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-300e_in1k-224_20220210_140925.log.json) |
|
|||
|
|
|||
|
|
|||
|
## Citation
|
|||
|
|
|||
|
```bibtex
|
|||
|
@article{He2021MaskedAA,
|
|||
|
title={Masked Autoencoders Are Scalable Vision Learners},
|
|||
|
author={Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and
|
|||
|
Piotr Doll'ar and Ross B. Girshick},
|
|||
|
journal={ArXiv},
|
|||
|
year={2021}
|
|||
|
}
|
|||
|
```
|