mmselfsup/openselfsup/hooks/optimizer_hook.py

32 lines
1.1 KiB
Python
Raw Normal View History

2020-06-16 00:05:18 +08:00
from mmcv.runner import OptimizerHook
2020-09-09 14:41:56 +08:00
try:
import apex
except:
print('apex is not installed')
2020-06-16 00:05:18 +08:00
class DistOptimizerHook(OptimizerHook):
2020-09-02 18:49:39 +08:00
"""Optimizer hook for distributed training."""
2020-06-16 00:05:18 +08:00
2020-09-09 14:41:56 +08:00
def __init__(self, update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False):
2020-06-16 00:05:18 +08:00
self.grad_clip = grad_clip
self.coalesce = coalesce
self.bucket_size_mb = bucket_size_mb
2020-06-29 00:10:34 +08:00
self.update_interval = update_interval
2020-09-09 14:41:56 +08:00
self.use_fp16 = use_fp16
2020-06-16 00:05:18 +08:00
2020-06-29 00:10:34 +08:00
def before_run(self, runner):
2020-06-16 00:05:18 +08:00
runner.optimizer.zero_grad()
2020-06-29 00:10:34 +08:00
def after_train_iter(self, runner):
runner.outputs['loss'] /= self.update_interval
2020-09-09 14:41:56 +08:00
if self.use_fp16:
with apex.amp.scale_loss(runner.outputs['loss'], runner.optimizer) as scaled_loss:
scaled_loss.backward()
else:
runner.outputs['loss'].backward()
2020-06-29 00:10:34 +08:00
if self.every_n_iters(runner, self.update_interval):
if self.grad_clip is not None:
self.clip_grads(runner.model.parameters())
runner.optimizer.step()
runner.optimizer.zero_grad()