## Deep Clustering for Unsupervised Learning of Visual Features
<!-- [ABSTRACT] -->
Clustering is a class of unsupervised learning methods that has been extensively applied and studied in computer vision. Little work has been done to adapt it to the end-to-end training of visual features on large scale datasets. In this work, we present DeepCluster, a clustering method that jointly learns the parameters of a neural network and the cluster assignments of the resulting features. DeepCluster iteratively groups the features with a standard clustering algorithm, k-means, and uses the subsequent assignments as supervision to update the weights of the network.
<!-- [IMAGE] -->
<divalign="center">
<img/>
</div>
## Citation
<!-- [ALGORITHM] -->
```bibtex
@inproceedings{caron2018deep,
title={Deep clustering for unsupervised learning of visual features},
author={Caron, Mathilde and Bojanowski, Piotr and Joulin, Armand and Douze, Matthijs},
In this page, we provide benchmarks as much as possible to evaluate our pre-trained models. If not mentioned, all models were trained on ImageNet1k dataset.
### Classification
The classification benchmarks includes 4 downstream task datasets, **VOC**, **ImageNet**, **iNaturalist2018** and **Places205**. If not specified, the results are Top-1 (%).
#### VOC SVM / Low-shot SVM
The **Best Layer** indicates that the best results are obtained from which layers feature map. For example, if the **Best Layer** is **feature3**, its best result is obtained from the second stage of ResNet (1 for stem layer, 2-5 for 4 stage layers).
Besides, k=1 to 96 indicates the hyper-parameter of Low-shot SVM.
The **Feature1 - Feature5** don't have the GlobalAveragePooling, the feature map is pooled to the specific dimensions and then follows a Linear layer to do the classification. Please refer to [resnet50_mhead_8xb32-steplr-90e.py](../../benchmarks/classification/imagenet/resnet50_mhead_8xb32-steplr-90e_in1k.py) for details of config.
The **AvgPool** result is obtained from Linear Evaluation with GlobalAveragePooling. Please refer to [file name]() for details of config.