mmselfsup/tests/test_models/test_algorithms/test_npid.py

55 lines
1.6 KiB
Python
Raw Normal View History

2022-05-25 15:10:11 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
2022-07-12 15:23:55 +08:00
from mmengine.data import InstanceData
2022-05-25 15:10:11 +08:00
from mmselfsup.core import SelfSupDataSample
from mmselfsup.models.algorithms import NPID
backbone = dict(
type='ResNet',
depth=18,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(
type='LinearNeck', in_channels=512, out_channels=2, with_avg_pool=True)
2022-07-12 15:23:55 +08:00
head = dict(
type='ContrastiveHead',
loss=dict(type='mmcls.CrossEntropyLoss'),
temperature=0.07)
2022-05-25 15:10:11 +08:00
memory_bank = dict(type='SimpleMemory', length=8, feat_dim=2, momentum=0.5)
2022-07-12 15:23:55 +08:00
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
2022-05-25 15:10:11 +08:00
def test_npid():
2022-07-12 15:23:55 +08:00
data_preprocessor = {
'mean': (123.675, 116.28, 103.53),
'std': (58.395, 57.12, 57.375),
'bgr_to_rgb': True
}
2022-05-25 15:10:11 +08:00
alg = NPID(
backbone=backbone,
neck=neck,
head=head,
memory_bank=memory_bank,
2022-07-12 15:23:55 +08:00
data_preprocessor=copy.deepcopy(data_preprocessor))
2022-05-25 15:10:11 +08:00
fake_data = [{
2022-07-12 15:23:55 +08:00
'inputs': [torch.randn((3, 224, 224))],
'data_sample':
SelfSupDataSample(
sample_idx=InstanceData(value=torch.randint(0, 7, (1, ))))
2022-05-25 15:10:11 +08:00
} for _ in range(2)]
2022-07-12 15:23:55 +08:00
fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_loss = alg(fake_inputs, fake_data_samples, mode='loss')
assert fake_loss['loss'] > -1
# test extract
fake_feats = alg(fake_inputs, fake_data_samples, mode='tensor')
assert fake_feats[0].size() == torch.Size([2, 512, 7, 7])