mmselfsup/tests/test_visualization/test_visualizer.py

224 lines
7.3 KiB
Python
Raw Normal View History

2022-07-14 07:08:08 +00:00
# Copyright (c) OpenMMLab. All rights reserved.
import os
from unittest import TestCase
import cv2
import numpy as np
import torch
from mmengine.structures import InstanceData
from mmengine.utils import digit_version
2022-07-14 07:08:08 +00:00
from mmselfsup.structures import SelfSupDataSample
from mmselfsup.visualization import SelfSupVisualizer
2022-07-14 07:08:08 +00:00
def _rand_patch_box(num_boxes, h, w):
cx, cy, bw, bh = torch.rand(num_boxes, 4).T
if digit_version(torch.__version__) < digit_version('1.7.0'):
clip = torch.clamp
else:
clip = torch.clip
2022-07-14 07:08:08 +00:00
tl_x = clip(((cx * w) - (w * bw / 2)), 0, w)
tl_y = clip(((cy * h) - (h * bh / 2)), 0, h)
br_x = clip(((cx * w) + (w * bw / 2)), 0, w)
br_y = clip(((cy * h) + (h * bh / 2)), 0, h)
patch_box = torch.stack([tl_x, tl_y, br_x, br_y]).T
2022-07-14 07:08:08 +00:00
return patch_box.unsqueeze(0)
class TestSelfSupVisualizer(TestCase):
2022-07-14 07:08:08 +00:00
def test_add_datasample(self):
h = 12
w = 12
out_file = 'out_file.jpg'
# ======= test relative_loc =======
# gt_instances
num_patch_box = 5
image = np.random.randint(0, 256, (h, w, 3))
image = np.expand_dims(image, 0)
pseudo_label = InstanceData()
pseudo_label.patch_box = _rand_patch_box(num_patch_box, h, w)
pseudo_label.unpatched_img = torch.tensor(image)
gt_selfsup_data_sample = SelfSupDataSample()
gt_selfsup_data_sample.pseudo_label = pseudo_label
# pred_instances
pseudo_label = InstanceData()
pseudo_label.patch_box = _rand_patch_box(num_patch_box, h, w)
pseudo_label.unpatched_img = torch.tensor(image)
pred_selfsup_data_sample = SelfSupDataSample()
pred_selfsup_data_sample.pseudo_label = pseudo_label
selfsup_visualizer = SelfSupVisualizer()
2022-07-14 07:08:08 +00:00
# test gt_instances
selfsup_visualizer.add_datasample('image', image,
gt_selfsup_data_sample)
2022-07-14 07:08:08 +00:00
# test out_file
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image', image, gt_selfsup_data_sample, out_file=out_file)
self._assert_image_and_shape(out_file, (h, w, 3))
# test pred_instance
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image',
image,
gt_selfsup_data_sample,
pred_selfsup_data_sample,
draw_gt=False,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w, 3))
# test gt_instances and pred_instances
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image',
image,
gt_selfsup_data_sample,
pred_selfsup_data_sample,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 2, 3))
# ======= test rotation_pred =======
# gt_instances
image = [np.random.randint(0, 256, (h, w, 3)) for _ in range(4)]
image = np.concatenate(image, axis=1)
pseudo_label = InstanceData()
pseudo_label.rot_label = torch.tensor([0, 1, 2, 3])
gt_selfsup_data_sample = SelfSupDataSample()
gt_selfsup_data_sample.pseudo_label = pseudo_label
# pred_instances
pseudo_label = InstanceData()
pseudo_label.rot_label = torch.tensor([0, 1, 2, 3])
pred_selfsup_data_sample = SelfSupDataSample()
pred_selfsup_data_sample.pseudo_label = pseudo_label
selfsup_visualizer = SelfSupVisualizer()
2022-07-14 07:08:08 +00:00
# test gt_instances
selfsup_visualizer.add_datasample('image', image,
gt_selfsup_data_sample)
2022-07-14 07:08:08 +00:00
# test out_file
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image', image, gt_selfsup_data_sample, out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 4, 3))
# test pred_instance
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image',
image,
gt_selfsup_data_sample,
pred_selfsup_data_sample,
draw_gt=False,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 4, 3))
# test gt_instances and pred_instances
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image',
image,
gt_selfsup_data_sample,
pred_selfsup_data_sample,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 8, 3))
# ======= test mask image modeling =======
# gt_instances
image = np.random.randint(0, 256, (h, w, 3))
mask = InstanceData()
mask.value = torch.tensor([[1, 0], [0, 1]])
gt_selfsup_data_sample = SelfSupDataSample()
gt_selfsup_data_sample.mask = mask
# pred_instances
mask = InstanceData()
mask.value = torch.tensor([[1, 0], [0, 1]])
pred_selfsup_data_sample = SelfSupDataSample()
pred_selfsup_data_sample.mask = mask
selfsup_visualizer = SelfSupVisualizer()
2022-07-14 07:08:08 +00:00
# test gt_instances
selfsup_visualizer.add_datasample('image', image,
gt_selfsup_data_sample)
2022-07-14 07:08:08 +00:00
# test out_file
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image', image, gt_selfsup_data_sample, out_file=out_file)
self._assert_image_and_shape(out_file, (h, w, 3))
# test pred_instance
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image',
image,
gt_selfsup_data_sample,
pred_selfsup_data_sample,
draw_gt=False,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w, 3))
# test gt_instances and pred_instances
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image',
image,
gt_selfsup_data_sample,
pred_selfsup_data_sample,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 2, 3))
# ======= test contrastive learning =======
# gt_instances
image = [np.random.randint(0, 256, (h, w, 3)) for _ in range(2)]
image = np.concatenate(image, axis=1)
gt_selfsup_data_sample = SelfSupDataSample()
# pred_instances
pred_selfsup_data_sample = SelfSupDataSample()
selfsup_visualizer = SelfSupVisualizer()
2022-07-14 07:08:08 +00:00
# test gt_instances
selfsup_visualizer.add_datasample('image', image,
gt_selfsup_data_sample)
2022-07-14 07:08:08 +00:00
# test out_file
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image', image, gt_selfsup_data_sample, out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 2, 3))
# test pred_instance
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image',
image,
gt_selfsup_data_sample,
pred_selfsup_data_sample,
draw_gt=False,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 2, 3))
# test gt_instances and pred_instances
selfsup_visualizer.add_datasample(
2022-07-14 07:08:08 +00:00
'image',
image,
gt_selfsup_data_sample,
pred_selfsup_data_sample,
out_file=out_file)
self._assert_image_and_shape(out_file, (h, w * 2 * 2, 3))
def _assert_image_and_shape(self, out_file, out_shape):
assert os.path.exists(out_file)
drawn_img = cv2.imread(out_file)
assert drawn_img.shape == out_shape
os.remove(out_file)