2022-05-16 09:32:33 +00:00
|
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
import platform
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
2022-05-27 13:02:25 +00:00
|
|
|
from mmengine.data import InstanceData
|
2022-05-16 09:32:33 +00:00
|
|
|
|
|
|
|
from mmselfsup.core import SelfSupDataSample
|
|
|
|
from mmselfsup.models.algorithms import SimMIM
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
|
|
def test_simmim():
|
|
|
|
|
|
|
|
# model config
|
|
|
|
model_config = dict(
|
|
|
|
backbone=dict(
|
|
|
|
type='SimMIMSwinTransformer',
|
|
|
|
arch='B',
|
|
|
|
img_size=192,
|
|
|
|
stage_cfgs=dict(block_cfgs=dict(window_size=6))),
|
|
|
|
neck=dict(
|
|
|
|
type='SimMIMNeck', in_channels=128 * 2**3, encoder_stride=32),
|
2022-06-16 07:12:58 +00:00
|
|
|
head=dict(
|
|
|
|
type='SimMIMHead',
|
|
|
|
patch_size=4,
|
|
|
|
loss=dict(type='SimMIMReconstructionLoss', encoder_in_channels=3)),
|
|
|
|
data_preprocessor={
|
2022-05-16 09:32:33 +00:00
|
|
|
'mean': [0.5, 0.5, 0.5],
|
|
|
|
'std': [0.5, 0.5, 0.5],
|
2022-06-16 07:12:58 +00:00
|
|
|
'bgr_to_rgb': True
|
2022-05-16 09:32:33 +00:00
|
|
|
})
|
|
|
|
model = SimMIM(**model_config)
|
|
|
|
|
|
|
|
# test forward_train
|
|
|
|
fake_data_sample = SelfSupDataSample()
|
2022-05-27 13:02:25 +00:00
|
|
|
fake_mask = InstanceData(value=torch.rand((48, 48)))
|
2022-05-16 09:32:33 +00:00
|
|
|
fake_data_sample.mask = fake_mask
|
|
|
|
fake_data = [{
|
|
|
|
'inputs': [torch.randn((3, 192, 192))],
|
|
|
|
'data_sample': fake_data_sample
|
|
|
|
} for _ in range(2)]
|
2022-06-16 07:12:58 +00:00
|
|
|
|
|
|
|
fake_batch_inputs, fake_data_samples = model.data_preprocessor(fake_data)
|
|
|
|
fake_outputs = model(fake_batch_inputs, fake_data_samples, mode='loss')
|
|
|
|
assert isinstance(fake_outputs['loss'].item(), float)
|
2022-05-16 09:32:33 +00:00
|
|
|
|
|
|
|
# test extract_feat
|
2022-06-16 07:12:58 +00:00
|
|
|
fake_inputs, fake_data_samples = model.data_preprocessor(fake_data)
|
|
|
|
fake_feat = model.extract_feat(fake_inputs, fake_data_samples)
|
|
|
|
assert list(fake_feat.shape) == [2, 3, 192, 192]
|