52 lines
1.7 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import platform
import pytest
import torch
from mmengine.data import InstanceData
from mmselfsup.core import SelfSupDataSample
from mmselfsup.models.algorithms import SimMIM
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_simmim():
# model config
model_config = dict(
backbone=dict(
type='SimMIMSwinTransformer',
arch='B',
img_size=192,
stage_cfgs=dict(block_cfgs=dict(window_size=6))),
neck=dict(
type='SimMIMNeck', in_channels=128 * 2**3, encoder_stride=32),
2022-06-16 07:12:58 +00:00
head=dict(
type='SimMIMHead',
patch_size=4,
loss=dict(type='SimMIMReconstructionLoss', encoder_in_channels=3)),
data_preprocessor={
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
2022-06-16 07:12:58 +00:00
'bgr_to_rgb': True
})
model = SimMIM(**model_config)
# test forward_train
fake_data_sample = SelfSupDataSample()
fake_mask = InstanceData(value=torch.rand((48, 48)))
fake_data_sample.mask = fake_mask
fake_data = [{
'inputs': [torch.randn((3, 192, 192))],
'data_sample': fake_data_sample
} for _ in range(2)]
2022-06-16 07:12:58 +00:00
fake_batch_inputs, fake_data_samples = model.data_preprocessor(fake_data)
fake_outputs = model(fake_batch_inputs, fake_data_samples, mode='loss')
assert isinstance(fake_outputs['loss'].item(), float)
# test extract_feat
2022-06-16 07:12:58 +00:00
fake_inputs, fake_data_samples = model.data_preprocessor(fake_data)
fake_feat = model.extract_feat(fake_inputs, fake_data_samples)
assert list(fake_feat.shape) == [2, 3, 192, 192]