48 lines
1.3 KiB
Python
Raw Normal View History

2021-12-15 19:07:01 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmselfsup.models.algorithms import DenseCL
queue_len = 65536
feat_dim = 128
momentum = 0.999
loss_lambda = 0.5
backbone = dict(
type='ResNet',
depth=50,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(
type='DenseCLNeck',
in_channels=2048,
hid_channels=4,
out_channels=4,
num_grid=None)
head = dict(type='ContrastiveHead', temperature=0.2)
def test_densecl():
with pytest.raises(AssertionError):
alg = DenseCL(backbone=backbone, neck=None, head=head)
with pytest.raises(AssertionError):
alg = DenseCL(backbone=backbone, neck=neck, head=None)
alg = DenseCL(
backbone=backbone,
neck=neck,
head=head,
queue_len=queue_len,
feat_dim=feat_dim,
momentum=momentum,
loss_lambda=loss_lambda)
assert alg.queue.size() == torch.Size([feat_dim, queue_len])
assert alg.queue2.size() == torch.Size([feat_dim, queue_len])
fake_input = torch.randn((16, 3, 224, 224))
fake_backbone_out = alg.extract_feat(fake_input)
assert fake_backbone_out[0].size() == torch.Size([16, 2048, 7, 7])
with pytest.raises(AssertionError):
fake_backbone_out = alg.forward_train(fake_input)