62 lines
1.8 KiB
Python
Raw Normal View History

2022-05-23 01:53:22 +00:00
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmengine.data import InstanceData
2022-05-23 01:53:22 +00:00
2022-07-15 05:23:54 +00:00
from mmselfsup.data import SelfSupDataSample
2022-05-23 01:53:22 +00:00
from mmselfsup.models.algorithms import DeepCluster
num_classes = 5
with_sobel = True,
backbone = dict(
2022-07-15 05:23:54 +00:00
type='ResNetSobel',
2022-05-23 01:53:22 +00:00
depth=18,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(type='AvgPool2dNeck')
head = dict(
type='ClsHead',
2022-07-14 07:53:08 +00:00
loss=dict(type='mmcls.CrossEntropyLoss'),
2022-05-23 01:53:22 +00:00
with_avg_pool=False, # already has avgpool in the neck
in_channels=512,
num_classes=num_classes)
2022-07-14 07:53:08 +00:00
@pytest.mark.skipif(
not torch.cuda.is_available() or platform.system() == 'Windows',
reason='CUDA is not available or Windows mem limit')
2022-05-23 01:53:22 +00:00
def test_deepcluster():
2022-07-14 07:53:08 +00:00
data_preprocessor = {
'mean': (123.675, 116.28, 103.53),
'std': (58.395, 57.12, 57.375),
'bgr_to_rgb': True
}
2022-05-23 01:53:22 +00:00
alg = DeepCluster(
backbone=backbone,
neck=neck,
head=head,
2022-07-14 07:53:08 +00:00
data_preprocessor=copy.deepcopy(data_preprocessor))
2022-05-23 01:53:22 +00:00
assert alg.num_classes == num_classes
assert hasattr(alg, 'neck')
assert hasattr(alg, 'head')
fake_data_sample = SelfSupDataSample()
2022-07-15 05:23:54 +00:00
clustering_label = InstanceData(clustering_label=torch.tensor([1]))
fake_data_sample.pseudo_label = clustering_label
2022-07-14 07:53:08 +00:00
fake_data = [{
2022-05-23 01:53:22 +00:00
'inputs': [torch.randn(3, 224, 224)],
'data_sample': fake_data_sample
} for _ in range(2)]
2022-07-14 07:53:08 +00:00
fake_inputs, fake_data_samples = alg.data_preprocessor(fake_data)
fake_loss = alg(fake_inputs, fake_data_samples, mode='loss')
assert fake_loss['loss'] > 0
2022-05-23 01:53:22 +00:00
2022-07-14 07:53:08 +00:00
# test extract
fake_feats = alg(fake_inputs, fake_data_samples, mode='tensor')
assert fake_feats[0].size() == torch.Size([2, 512, 7, 7])