2020-06-16 00:05:18 +08:00
|
|
|
import torch
|
|
|
|
from torch.optim.optimizer import Optimizer, required
|
|
|
|
from torch.optim import *
|
2020-06-29 00:10:34 +08:00
|
|
|
from .larc import LARC
|
2020-06-16 00:05:18 +08:00
|
|
|
|
|
|
|
|
|
|
|
class LARS(Optimizer):
|
|
|
|
r"""Implements layer-wise adaptive rate scaling for SGD.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
params (iterable): iterable of parameters to optimize or dicts defining
|
|
|
|
parameter groups
|
|
|
|
lr (float): base learning rate (\gamma_0)
|
|
|
|
momentum (float, optional): momentum factor (default: 0) ("m")
|
|
|
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
|
|
|
("\beta")
|
2020-06-29 00:10:34 +08:00
|
|
|
dampening (float, optional): dampening for momentum (default: 0)
|
2020-06-16 00:05:18 +08:00
|
|
|
eta (float, optional): LARS coefficient
|
2020-06-29 00:10:34 +08:00
|
|
|
nesterov (bool, optional): enables Nesterov momentum (default: False)
|
2020-06-16 00:05:18 +08:00
|
|
|
|
|
|
|
Based on Algorithm 1 of the following paper by You, Gitman, and Ginsburg.
|
|
|
|
Large Batch Training of Convolutional Networks:
|
|
|
|
https://arxiv.org/abs/1708.03888
|
|
|
|
|
|
|
|
Example:
|
2020-06-29 00:10:34 +08:00
|
|
|
>>> optimizer = LARS(model.parameters(), lr=0.1, momentum=0.9,
|
|
|
|
>>> weight_decay=1e-4, eta=1e-3)
|
2020-06-16 00:05:18 +08:00
|
|
|
>>> optimizer.zero_grad()
|
|
|
|
>>> loss_fn(model(input), target).backward()
|
|
|
|
>>> optimizer.step()
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
params,
|
|
|
|
lr=required,
|
2020-06-29 00:10:34 +08:00
|
|
|
momentum=0,
|
|
|
|
dampening=0,
|
|
|
|
weight_decay=0,
|
|
|
|
eta=0.001,
|
|
|
|
nesterov=False):
|
2020-06-16 00:05:18 +08:00
|
|
|
if lr is not required and lr < 0.0:
|
|
|
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
|
|
|
if momentum < 0.0:
|
|
|
|
raise ValueError("Invalid momentum value: {}".format(momentum))
|
|
|
|
if weight_decay < 0.0:
|
|
|
|
raise ValueError(
|
|
|
|
"Invalid weight_decay value: {}".format(weight_decay))
|
|
|
|
if eta < 0.0:
|
|
|
|
raise ValueError("Invalid LARS coefficient value: {}".format(eta))
|
|
|
|
|
|
|
|
defaults = dict(
|
2020-06-29 00:10:34 +08:00
|
|
|
lr=lr, momentum=momentum, dampening=dampening,
|
|
|
|
weight_decay=weight_decay, nesterov=nesterov, eta=eta)
|
|
|
|
if nesterov and (momentum <= 0 or dampening != 0):
|
|
|
|
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
|
|
|
|
|
2020-06-16 00:05:18 +08:00
|
|
|
super(LARS, self).__init__(params, defaults)
|
|
|
|
|
2020-06-29 00:10:34 +08:00
|
|
|
def __setstate__(self, state):
|
|
|
|
super(LARS, self).__setstate__(state)
|
|
|
|
for group in self.param_groups:
|
|
|
|
group.setdefault('nesterov', False)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
2020-06-16 00:05:18 +08:00
|
|
|
def step(self, closure=None):
|
|
|
|
"""Performs a single optimization step.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
|
|
and returns the loss.
|
|
|
|
"""
|
|
|
|
loss = None
|
|
|
|
if closure is not None:
|
2020-06-29 00:10:34 +08:00
|
|
|
with torch.enable_grad():
|
|
|
|
loss = closure()
|
2020-06-16 00:05:18 +08:00
|
|
|
|
|
|
|
for group in self.param_groups:
|
|
|
|
weight_decay = group['weight_decay']
|
|
|
|
momentum = group['momentum']
|
2020-06-29 00:10:34 +08:00
|
|
|
dampening = group['dampening']
|
2020-06-16 00:05:18 +08:00
|
|
|
eta = group['eta']
|
2020-06-29 00:10:34 +08:00
|
|
|
nesterov = group['nesterov']
|
2020-06-16 00:05:18 +08:00
|
|
|
lr = group['lr']
|
2020-06-29 00:10:34 +08:00
|
|
|
lars_exclude = group.get('lars_exclude', False)
|
2020-06-16 00:05:18 +08:00
|
|
|
|
|
|
|
for p in group['params']:
|
|
|
|
if p.grad is None:
|
|
|
|
continue
|
|
|
|
|
2020-06-29 00:10:34 +08:00
|
|
|
d_p = p.grad
|
2020-06-16 00:05:18 +08:00
|
|
|
|
2020-06-29 00:10:34 +08:00
|
|
|
if lars_exclude:
|
|
|
|
local_lr = 1.
|
|
|
|
else:
|
|
|
|
weight_norm = torch.norm(p).item()
|
|
|
|
grad_norm = torch.norm(d_p).item()
|
|
|
|
# Compute local learning rate for this layer
|
|
|
|
local_lr = eta * weight_norm / \
|
|
|
|
(grad_norm + weight_decay * weight_norm)
|
2020-06-16 00:05:18 +08:00
|
|
|
|
|
|
|
actual_lr = local_lr * lr
|
2020-06-29 00:10:34 +08:00
|
|
|
d_p = d_p.add(p, alpha=weight_decay).mul(actual_lr)
|
|
|
|
if momentum != 0:
|
|
|
|
param_state = self.state[p]
|
|
|
|
if 'momentum_buffer' not in param_state:
|
|
|
|
buf = param_state['momentum_buffer'] = \
|
|
|
|
torch.clone(d_p).detach()
|
|
|
|
else:
|
|
|
|
buf = param_state['momentum_buffer']
|
|
|
|
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
|
|
|
|
if nesterov:
|
|
|
|
d_p = d_p.add(buf, alpha=momentum)
|
|
|
|
else:
|
|
|
|
d_p = buf
|
|
|
|
p.add_(-d_p)
|
2020-06-16 00:05:18 +08:00
|
|
|
|
|
|
|
return loss
|