75 lines
2.0 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import pytest
import torch
from mmselfsup.core.data_structures.selfsup_data_sample import \
SelfSupDataSample
from mmselfsup.models.algorithms.simclr import SimCLR
backbone = dict(
type='ResNet',
depth=18,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(
type='NonLinearNeck', # SimCLR non-linear neck
in_channels=512,
hid_channels=2,
out_channels=2,
num_layers=2,
with_avg_pool=True)
head = dict(type='ContrastiveHead', temperature=0.1)
2022-05-25 02:47:39 +00:00
loss = dict(type='mmcls.CrossEntropyLoss')
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_simclr():
preprocess_cfg = {
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'to_rgb': True
}
with pytest.raises(AssertionError):
alg = SimCLR(
backbone=backbone,
neck=None,
head=head,
2022-05-25 02:47:39 +00:00
loss=loss,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
with pytest.raises(AssertionError):
alg = SimCLR(
backbone=backbone,
neck=neck,
head=None,
2022-05-25 02:47:39 +00:00
loss=loss,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
with pytest.raises(AssertionError):
alg = SimCLR(
backbone=backbone,
neck=neck,
head=head,
loss=None,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
alg = SimCLR(
backbone=backbone,
neck=neck,
head=head,
2022-05-25 02:47:39 +00:00
loss=loss,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
fake_data = [{
'inputs': [torch.randn((3, 224, 224)),
torch.randn((3, 224, 224))],
'data_sample':
SelfSupDataSample()
} for _ in range(2)]
fake_inputs, fake_data_samples = alg.preprocss_data(fake_data)
fake_feat = alg.extract_feat(
inputs=fake_inputs, data_samples=fake_data_samples)
assert list(fake_feat[0].shape) == [2, 512, 7, 7]