# Copyright (c) OpenMMLab. All rights reserved.
from unittest.mock import MagicMock
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from mmselfsup.utils.test_helper import single_gpu_test
class ExampleDataset(Dataset):
def __getitem__(self, idx):
results = dict(img=torch.tensor([1]), img_metas=dict())
return results
def __len__(self):
return 1
class ExampleModel(nn.Module):
def __init__(self):
super(ExampleModel, self).__init__()
self.test_cfg = None
self.conv = nn.Conv2d(3, 3, 3)
def forward(self, img, mode='test', **kwargs):
return dict(img=img)
def train_step(self, data_batch, optimizer):
loss = self.forward(**data_batch)
return dict(loss=loss)
def test_test_helper():
test_dataset = ExampleDataset()
test_dataset.evaluate = MagicMock(return_value=dict(test='success'))
data_loader = DataLoader(
test_dataset, batch_size=1, sampler=None, num_workers=0, shuffle=False)
model = ExampleModel()
res = single_gpu_test(model, data_loader)
assert res['img'] == np.array([[1]])