113 lines
3.1 KiB
Python
Raw Normal View History

2022-05-17 02:27:17 +00:00
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
from unittest.mock import MagicMock
import pytest
import torch
import mmselfsup
from mmselfsup.core import SelfSupDataSample
from mmselfsup.models.algorithms import MoCo
queue_len = 32
feat_dim = 2
momentum = 0.999
backbone = dict(
type='ResNet',
depth=18,
in_channels=3,
out_indices=[4], # 0: conv-1, x: stage-x
norm_cfg=dict(type='BN'))
neck = dict(
type='MoCoV2Neck',
in_channels=512,
hid_channels=2,
out_channels=2,
with_avg_pool=True)
head = dict(type='ContrastiveHead', temperature=0.2)
2022-05-25 02:47:39 +00:00
loss = dict(type='mmcls.CrossEntropyLoss')
2022-05-17 02:27:17 +00:00
def mock_batch_shuffle_ddp(img):
return img, 0
def mock_batch_unshuffle_ddp(img, mock_input):
return img
def mock_concat_all_gather(img):
return img
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
def test_moco():
preprocess_cfg = {
'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225],
'to_rgb': True
}
with pytest.raises(AssertionError):
alg = MoCo(
backbone=None,
neck=neck,
head=head,
2022-05-25 02:47:39 +00:00
loss=loss,
2022-05-17 02:27:17 +00:00
preprocess_cfg=copy.deepcopy(preprocess_cfg))
with pytest.raises(AssertionError):
alg = MoCo(
backbone=backbone,
neck=None,
head=head,
2022-05-25 02:47:39 +00:00
loss=loss,
2022-05-17 02:27:17 +00:00
preprocess_cfg=copy.deepcopy(preprocess_cfg))
with pytest.raises(AssertionError):
alg = MoCo(
backbone=backbone,
neck=neck,
head=None,
2022-05-25 02:47:39 +00:00
loss=loss,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
with pytest.raises(AssertionError):
alg = MoCo(
backbone=backbone,
neck=neck,
head=head,
loss=None,
2022-05-17 02:27:17 +00:00
preprocess_cfg=copy.deepcopy(preprocess_cfg))
alg = MoCo(
backbone=backbone,
neck=neck,
head=head,
2022-05-25 02:47:39 +00:00
loss=loss,
2022-05-17 02:27:17 +00:00
queue_len=queue_len,
feat_dim=feat_dim,
momentum=momentum,
preprocess_cfg=copy.deepcopy(preprocess_cfg))
assert alg.queue.size() == torch.Size([feat_dim, queue_len])
fake_data = [{
'inputs': [torch.randn((3, 224, 224)),
torch.randn((3, 224, 224))],
'data_sample':
SelfSupDataSample()
} for _ in range(2)]
mmselfsup.models.algorithms.moco.batch_shuffle_ddp = MagicMock(
side_effect=mock_batch_shuffle_ddp)
mmselfsup.models.algorithms.moco.batch_unshuffle_ddp = MagicMock(
side_effect=mock_batch_unshuffle_ddp)
mmselfsup.models.algorithms.moco.concat_all_gather = MagicMock(
side_effect=mock_concat_all_gather)
fake_loss = alg(fake_data, return_loss=True)
assert fake_loss['loss'] > 0
assert alg.queue_ptr.item() == 2
# test extract
fake_inputs, fake_data_samples = alg.preprocss_data(fake_data)
fake_backbone_out = alg.extract_feat(
inputs=fake_inputs, data_samples=fake_data_samples)
assert fake_backbone_out[0].size() == torch.Size([2, 512, 7, 7])