2022-05-17 02:27:17 +00:00
|
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
import copy
|
|
|
|
import platform
|
|
|
|
from unittest.mock import MagicMock
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import mmselfsup
|
|
|
|
from mmselfsup.core import SelfSupDataSample
|
|
|
|
from mmselfsup.models.algorithms import MoCo
|
|
|
|
|
|
|
|
queue_len = 32
|
|
|
|
feat_dim = 2
|
|
|
|
momentum = 0.999
|
|
|
|
backbone = dict(
|
|
|
|
type='ResNet',
|
|
|
|
depth=18,
|
|
|
|
in_channels=3,
|
|
|
|
out_indices=[4], # 0: conv-1, x: stage-x
|
|
|
|
norm_cfg=dict(type='BN'))
|
|
|
|
neck = dict(
|
|
|
|
type='MoCoV2Neck',
|
|
|
|
in_channels=512,
|
|
|
|
hid_channels=2,
|
|
|
|
out_channels=2,
|
|
|
|
with_avg_pool=True)
|
|
|
|
head = dict(type='ContrastiveHead', temperature=0.2)
|
2022-05-25 02:47:39 +00:00
|
|
|
loss = dict(type='mmcls.CrossEntropyLoss')
|
2022-05-17 02:27:17 +00:00
|
|
|
|
|
|
|
|
|
|
|
def mock_batch_shuffle_ddp(img):
|
|
|
|
return img, 0
|
|
|
|
|
|
|
|
|
|
|
|
def mock_batch_unshuffle_ddp(img, mock_input):
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
def mock_concat_all_gather(img):
|
|
|
|
return img
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit')
|
|
|
|
def test_moco():
|
|
|
|
preprocess_cfg = {
|
|
|
|
'mean': [0.485, 0.456, 0.406],
|
|
|
|
'std': [0.229, 0.224, 0.225],
|
|
|
|
'to_rgb': True
|
|
|
|
}
|
|
|
|
with pytest.raises(AssertionError):
|
|
|
|
alg = MoCo(
|
|
|
|
backbone=None,
|
|
|
|
neck=neck,
|
|
|
|
head=head,
|
2022-05-25 02:47:39 +00:00
|
|
|
loss=loss,
|
2022-05-17 02:27:17 +00:00
|
|
|
preprocess_cfg=copy.deepcopy(preprocess_cfg))
|
|
|
|
with pytest.raises(AssertionError):
|
|
|
|
alg = MoCo(
|
|
|
|
backbone=backbone,
|
|
|
|
neck=None,
|
|
|
|
head=head,
|
2022-05-25 02:47:39 +00:00
|
|
|
loss=loss,
|
2022-05-17 02:27:17 +00:00
|
|
|
preprocess_cfg=copy.deepcopy(preprocess_cfg))
|
|
|
|
with pytest.raises(AssertionError):
|
|
|
|
alg = MoCo(
|
|
|
|
backbone=backbone,
|
|
|
|
neck=neck,
|
|
|
|
head=None,
|
2022-05-25 02:47:39 +00:00
|
|
|
loss=loss,
|
|
|
|
preprocess_cfg=copy.deepcopy(preprocess_cfg))
|
|
|
|
with pytest.raises(AssertionError):
|
|
|
|
alg = MoCo(
|
|
|
|
backbone=backbone,
|
|
|
|
neck=neck,
|
|
|
|
head=head,
|
|
|
|
loss=None,
|
2022-05-17 02:27:17 +00:00
|
|
|
preprocess_cfg=copy.deepcopy(preprocess_cfg))
|
|
|
|
|
|
|
|
alg = MoCo(
|
|
|
|
backbone=backbone,
|
|
|
|
neck=neck,
|
|
|
|
head=head,
|
2022-05-25 02:47:39 +00:00
|
|
|
loss=loss,
|
2022-05-17 02:27:17 +00:00
|
|
|
queue_len=queue_len,
|
|
|
|
feat_dim=feat_dim,
|
|
|
|
momentum=momentum,
|
|
|
|
preprocess_cfg=copy.deepcopy(preprocess_cfg))
|
|
|
|
assert alg.queue.size() == torch.Size([feat_dim, queue_len])
|
|
|
|
|
|
|
|
fake_data = [{
|
|
|
|
'inputs': [torch.randn((3, 224, 224)),
|
|
|
|
torch.randn((3, 224, 224))],
|
|
|
|
'data_sample':
|
|
|
|
SelfSupDataSample()
|
|
|
|
} for _ in range(2)]
|
|
|
|
|
|
|
|
mmselfsup.models.algorithms.moco.batch_shuffle_ddp = MagicMock(
|
|
|
|
side_effect=mock_batch_shuffle_ddp)
|
|
|
|
mmselfsup.models.algorithms.moco.batch_unshuffle_ddp = MagicMock(
|
|
|
|
side_effect=mock_batch_unshuffle_ddp)
|
|
|
|
mmselfsup.models.algorithms.moco.concat_all_gather = MagicMock(
|
|
|
|
side_effect=mock_concat_all_gather)
|
|
|
|
fake_loss = alg(fake_data, return_loss=True)
|
|
|
|
assert fake_loss['loss'] > 0
|
|
|
|
assert alg.queue_ptr.item() == 2
|
|
|
|
|
|
|
|
# test extract
|
|
|
|
fake_inputs, fake_data_samples = alg.preprocss_data(fake_data)
|
|
|
|
fake_backbone_out = alg.extract_feat(
|
|
|
|
inputs=fake_inputs, data_samples=fake_data_samples)
|
|
|
|
assert fake_backbone_out[0].size() == torch.Size([2, 512, 7, 7])
|